
Verification of C Programs Using Automated Reasoning

David Crocker and Judith Carlton
Escher Technologies Ltd.

Mallard House, Hillside Road, Ash Vale,
Aldershot GU12 5BJ, United Kingdom
{dcrocker, jcarlton}@eschertech.com

Abstract

Much of the embedded software development market has
necessarily tight constraints on program size and processor
power, hence developers use handwritten C rather than au-
tocode. They rely primarily on testing to find errors in their
code.

We have an established software development tool
known commercially as Perfect Developer, which uses a
powerful automatic theorem prover and inference engine
to reason about requirements and specifications. We have
found that automated reasoning can be used to discharge a
very high proportion of verification conditions arising from
the specification and refinement of software components de-
scribed in our formal specification language, Perfect. The
Perfect Developer tool set can also generate code in a C++
subset or in Java, and the output code is then virtually cer-
tain to meet the stated specification, reducing the need for
exhaustive testing. However, this is not helpful to develop-
ers of embedded software who are constrained to write code
by hand.

We therefore decided to investigate whether automated
reasoning could provide a similar degree of success in the
verification of annotated C code. We present our prelimi-
nary findings.

1. Introduction

Software is being increasingly used in safety- and
mission-critical applications. Many of these applications
demand a degree of dependability that is difficult to achieve
using traditional software development techniques. It is of-
ten impossible to demonstrate that the required integrity
level has been achieved through testing alone, due to the
limited number of tests that can be performed, even if the
testing phase spans many weeks. Therefore, it is prefer-
able to develop critical applications using a correctness-by-
construction approach that eliminates most sources of er-

ror well before testing commences. A vital part of this ap-
proach is formal proof that execution of the software will
meet the stated requirements, together with the implicit re-
quirements that the software will not crash or suffer other
runtime errors such as divide-by zero or buffer overflow.
Testing is still used, but its primary role is to check that the
construction method and tool chain are sound.

Correctness-by-construction starts with a formal specifi-
cation of the requirements. Some practitioners use a spec-
ification language such as Z or VDM for this purpose, in
conjunction with a traditional programming language for
implementation. Our preferred approach is to use a single
formal notation that provides for specification, design and
refinement, followed by automatic translation of the most
refined version of the design to ready-to-compile code. Ex-
amples of systems that support this approach are B [2] and
our own Perfect Developer [11].

In some sectors of the embedded software market, for
example, in high-volume consumer electronics, processor
cost is critical, so available processor power is tightly con-
strained. In space applications, electrical power is at a pre-
mium, so once again processor power is limited. In applica-
tions such as these, handwritten code is preferred to gener-
ated code because of its compactness and efficiency. Even
so, system size is increasing, which means that verification
by exhaustive testing is becoming less and less practicable.

Our success in using automated reasoning to discharge
a very high proportion of generated verification conditions
(also called proof obligations) in Perfect Developer led us
to consider whether we could adapt the tool to achieve the
same success rate in attempting to verify programs written
in C, a popular implementation language for embedded soft-
ware. The approach we took was to augment the tool with
a front-end for processing a subset of C. We were able to
represent all the types supported by C as Perfect types with
only minor extensions. Similarly, we found we could trans-
late most statement types supported by the C language into
statements supported by the refinement sublanguage of Per-
fect. The major extension we added to the semantic proces-

sor was support for expressions with side-effects.

2. Related Work

The approach of annotating programming languages
with specification constructs has been described by a num-
ber of authors. Current implementations of annotated de-
velopment fall into two camps.

The first camp comprises tools aimed at providing proof
of correctness. These tools typically enforce a strict sub-
set of the selected programming language and are therefore
better suited to new development of safety- and mission-
critical software rather than trying to improve the quality
of legacy code. The most successful example of this genre
to date is SPARK Ada [12], a commercially-supported nota-
tion that has been used to develop some sizeable critical sys-
tems. More recent tools include Spec# [5] which adds con-
tracts and other specifications to C#, and Why [15], which
has been used to verify programs in a number of languages
including C [16] using both automatic and human-assisted
proof tools.

The second camp comprises tools whose goals are ease
of use and the detection of a substantial proportion of
bugs - such as buffer overflow and other run-time errors -
rather than proving program correctness. Examples of these
‘lightweight’ tools include Splint [13] (a derivative of Larch
[9]) and ESC/Java [6]. Some of these tools intentionally
sacrifice completeness and soundness in order to be more
useful on un-annotated or lightly-annotated code.

Also useful in this space is is Abstract Interpretation [1],
a technique for checking that programs are free from run-
time errors that does not require the source code to be anno-
tated. Although sound, it uses conservative approximations
of the state space to keep the problem size manageable, at
the expense of sometimes reporting potential errors that in
reality cannot occur.

Our own work is focussed on proof of correctness - not
just freedom from runtime errors - for critical software sys-
tems using a fully automatic prover. Systems that employ
interactive proof assistants have the advantage that even dif-
ficult proofs can be discharged with enough manual effort;
but our view is that only systems that use fully automatic
provers stand any chance of widespread industrial accep-
tance.

3. Towards a verifiable C

In the C language, it is easy to write constructs that have
undefined or implementation-defined behaviour. It follows
that C is far from an ideal choice for writing critical applica-
tions. However, the C language definition documents [3, 4]
state fairly clearly the situations in which behaviour is not

well-defined. This makes it possible to define subsets of C
with well-defined semantics. One attempt at such a subset
is MISRA C [10].

Although many of the restrictions imposed by such sub-
sets can be enforced statically, others depend on the interre-
lation between different parts of the program, in ways that
can only be resolved using mathematical proof.

Whereas some of the MISRA rules are based on notions
of “good programming practice” rather than the avoidance
of undefined behaviour, we have selected our subset of C
solely with verification in mind. Not surprisingly, almost
all the constructs that are prohibited in our subset are also
prohibited in the MISRA subset, although the reverse is not
true.

In adapting Perfect Developer for C, we chose to retain
the Verified Design-by-Contract paradigm [14] that the tool
uses when verifying Perfect. This paradigm requires as a
minimum that all function preconditions must be explicitly
stated. Although this may seem rather burdensome for the
programmer, the rigorous documentation of preconditions
greatly enhances maintainability and reusability, even when
formal methods are not otherwise used. In a critical system,
we maintain that when a programmer writes a function call,
there should be no uncertainty in his/her mind as to what
conditions must be satisfied in order that the called function
can be relied upon to behave as expected.

The usual way of augmenting programs with formal
specifications is to express them as specially-formatted
comments. In many languages, no other choice is available,
assuming the requirement that the source text is to be
compiled by a standard, unmodified compiler. However,
formatting specifications as comments regrettably suggests
to developers that they are unimportant to the functioning
of the program. We prefer specifications to have a more
central role in the language. Fortunately, the C language
offers us an alternative: namely, to define specification
constructs using macros. In C, macros can be defined so
as to expand to nothing when the program is compiled, so
that the specification is invisible to a standard compiler but
visible to our verifier. For example, we declare function
preconditions using the construct pre(expression), having
made the macro definition:

#define pre(x) /* nothing */

visible to the compiler.
One small disadvantage of using macros is that under

C89 the number of arguments must be fixed for any particu-
lar macro. If the user tries to declare two comma-separated
preconditions in a single pre clause like this:

pre(p1, p2)

then the compiler will refuse to compile the program
because it is expecting a single macro argument but finds
two. However, the following alternative forms:

pre(p1) pre(p2)
pre(p1; p2)
pre((p1, p2))
pre(p1 && p2)

all avoid this problem.

4. Applying Design-by-Contract to C

Any attempt to define contracts for functions written in
C must address the particular challenges that this language
presents. Some of these are discussed here. We use the term
ghost to refer to an entity that can be used in a specification
construct but not in the program text visible to the compiler.

4.1. Arrays and pointers

Possibly the biggest flaw in the C language is its lack
of distinction between a pointer to a single storage location
and an array (which, in C, is just a pointer to a block of
contiguous locations). A related problem is that when an
array is passed as a parameter to a function, the called func-
tion has no way of determining the number of addressable
elements in the array, unless this information is passed in
an additional parameter. However, when writing specifica-
tions, it is frequently necessary to refer to the length of an
array.

We work round this problem as follows. First, we
distinguish between pointers to single locations and point-
ers to arrays. This we do by using the keyword array
when declaring an array pointer. Thus, in the following
declarations:

int *p;
int array *pa;

the variable p is a pointer to a single element, whereas
the variable pa is a pointer to an array. Our processor
enforces the correct use of this annotation, for examply by
prohibiting the use of pointer arithmetic and indexing on
plain pointers.

Second, we treat an array pointer as if it is a struc-
ture comprising three variables: two ghost integer variables
named lwb and upb which represent the lower and upper
bounds of the array, and the storage pointer itself. The main
use of the ghost variables is to describe the function pre-
conditions that ensure array accesses are in bounds. For
example, the precondition of the array access pa[i] is

pa.lwb <= i && i <= pa.upb. As a further conve-
nience, we provide an additional ghost member lim (short
for limit) defined as upb+1.

A further consideration is that whereas C allows the
value of any pointer to be zero (i.e. pointing to nothing),
in many contexts a zero value is inappropriate, because
any attempt to dereference it will lead to undefined be-
haviour. We require the programmer to state explicitly that
particular variables and parameters are allowed to take
null values. We do this by decorating their declarations
with the keyword null. In the absence of such decoration,
zero-valued pointers are prohibited. For example, in the
following declarations:

int null array *pna;
int *p;

variable pna may point to an array or be zero, while
variable p is a nonzero pointer to a simple variable or
single element. This approach avoids the need to pepper
the program with preconditions of the form p != 0.
Furthermore, when a pointer is dereferenced, we do not
need to generate a verification condition that it is non-null
unless the user has declared that null is a permitted value
for it.

Next, the correct operation of many functions (including
library functions like strcpy) requires that two or more array
pointers passed into the function refer to non-overlapping
storage. We allow this to be expressed by augmenting our
representation of pointers and array pointers with a ghost
member function disjoint, which takes another pointer as a
parameter and returns true if and only if the result of any
legal indexing of the pointers cannot refer to the same el-
ement. Of course, C has no notion of functions that are
structure members, but we felt here that it was sensible to
borrow a small amount of syntax from C++.

Finally, a string literal in C has three different meanings
depending on whether it is used as an array initialiser, the
operand of sizeof, or in a context where a value of type
char* (actually const array char* in our subset) is
required. We handle this by assigning the Perfect type seq
of char to string literals, but allowing automatic type con-
version of string literals to const array char* where
required. A further refinement allows for the fact that com-
pilers are permitted to perform string pooling, so that identi-
cal string literals appearing in different places in the source
code are not necessarily disjoint when converted to array
pointers.

4.2. Unions

Although coding guidelines for critical systems often
deprecate the use of undiscriminated unions such as are

supported in C, we feel that in the absence of alternative
facilities (such as discriminated unions, or inheritance and
polymorphism), unions are too useful and should be tamed
rather than ignored. In our semantic model, each variable
of union type remembers the name of the union member
through which its current value was assigned. When a mem-
ber of a union variable is read, it is a precondition that the
member being read must match the remembered name. The
remembered name can be queried using the ghost expres-
sion v holds member where v is an expression of union
type and member is the name of one of the members of its
type.

4.3. Side effects

In writing specifications, it is important to use expres-
sions that are free from side-effects. Unfortunately, side-
effects are common in C expressions. We use the term pure
to indicate that an expression is side-effect free, and a func-
tion can be annotated with this keyword to indicate that it
has no side-effects. The language processor enforces cor-
rect use of this keyword in a conservative manner by report-
ing an error if the function is found to modify any global
variables, or if it writes through any pointers, or if it calls
another function that is not annotated pure. All expressions
used in specifications are required to be pure.

4.4. Quantifiers

The expression sublanguage of C does not provide
quantification over types or collections. However, quantifi-
cation is frequently needed in specifications. We therefore
imported quantified expressions from Perfect with syntactic
modifications to fit better with the style of C. We allow
quantification over types and over ranges of integers, using
the expression a..b to denote the set of integers from a to
b inclusive (or the empty set if b < a). For example, the
expression:

forall int i in a.lwb..a.upb:- a[i]>0

expresses the notion that all members of the array a
are positive. These expressions can, of course, be used only
within specifications.

5. A small example

Consider a function that uses the strcat and strcpy func-
tions from the Standard C Library to build a message of
the form “Error type at location” in a buffer supplied by the
caller, where type is an indexed member of list of error mes-
sages and location is an input string. This program could
exhibit various run-time errors including the following:

• If type is not a valid index into the list of messages, the
behaviour is undefined

• If either the input string or the error message is not
null-terminated, characters will be read beyond its up-
per bound

• If the buffer is too short to contain both strings, it will
overflow

• If either string is a null pointer, the program may crash

• If the output buffer overlaps the input string, the copy
operation may overwrite the input data before it has
all been read, overwriting the terminating null and re-
sulting in a nonterminating copy operation and buffer
overflow

We wish to specify and write this function in such a way
that correct operation is assured as long as a declared pre-
condition is satisfied by the caller. In turn, we will verify
that all callers of the function satisfy the precondition.

First we declare an auxiliary ghost function isNullTermi-
nated so that we can more easily describe null-terminated
strings. Next, we augment the strcpy, strcat and strlen
function prototypes with specifications. In order to avoid
the need to modify the standard C header file string.h we
provide a mechanism for declaring a function specification
separately from its normal prototype declaration, using the
keyword spec to indicate that a declaration is provided for
specification purposes only and it should be attached to a
function or function prototype declared elsewhere. For con-
venience, we package these and many other specifications
of C library functions in a special header file arc.h. Extracts
from this file relevant to our example are shown in Listing 1.

We can now write the function itself, together with some
example client code (Listing 2). This example give rise to
26 verification conditions, a surprisingly high number for
such a small example. Of these, 6 relate to an index into
errorMessages being in bounds, another 6 relate to the pre-
conditions of buildMessage being satisfied at its point of
call, and no less than 14 relate to the preconditions of strlen,
strcpy and strcat.

6. Beyond freedom from run-time errors

The preceding example demonstrates a level of function
specification sufficient to ensure absence of undefined be-
haviour and run-time errors. However, with a little more
effort we can add postconditions that specify the required
outcomes, and then use the verifier to prove that they will
be achieved. Listing 3 shows a binary search function,
augmented not only with the preconditions needed to en-
sure correct behaviour, but also with postconditions to de-
fine the required result, a loop variant (the decrease clause)

i f d e f i n e d (ARC) && ! d e f i n e d (ARC H INCLUDED)
d e f i n e ARC H INCLUDED

/ / S p e c i f y t h e s t a n d a r d s t r i n g f u n c t i o n s f o r t h e v e r i f i e r

ghos t pure boo l i s N u l l T e r m i n a t e d (c o n s t array char∗ s)
pos t (r e s u l t == (e x i s t s i in 0 . . s . upb :− s [i] == ’\0 ’)) ;

spec i n t s t r l e n (c o n s t array char∗ s r c)
pre (i s N u l l T e r m i n a t e d (s r c))
pos t (r e s u l t in 0 . . s r c . upb && s r c [r e s u l t] == ’\0 ’

&& (f o r a l l j in 0 . . (r e s u l t − 1) :− s r c [j] != ’\0 ’)) ;

spec array char∗ s t r c p y (array char∗ d s t , c o n s t array char∗ s r c)
pre (i s N u l l T e r m i n a t e d (s r c) ; d s t . d i s j o i n t (s r c) ; d s t . upb > s t r l e n (s r c))
pos t (s r c . e lems == o l d s r c . e lems ; i s N u l l T e r m i n a t e d (d s t) ; s t r l e n (d s t) == s t r l e n (o l d s r c)) ;

spec array char∗ s t r c a t (array char∗ d s t , c o n s t array char∗ s r c)
pre (i s N u l l T e r m i n a t e d (s r c) ; i s N u l l T e r m i n a t e d (d s t) ; d s t . d i s j o i n t (s r c) ;

d s t . l im > s t r l e n (s r c) + s t r l e n (d s t))
pos t (s r c . e lems == o l d s r c . e lems ; i s N u l l T e r m i n a t e d (d s t) ;

s t r l e n (d s t) == s t r l e n (o l d d s t) + s t r l e n (s r c)) ;

e l s e

/ / D e f i n e t h e s p e c i f i c a t i o n macros as expand ing t o n o t h i n g when t h e program i s c o m p i l e d

d e f i n e array
d e f i n e a s s e r t
d e f i n e change (x)
d e f i n e d e c r e a s e (x)
d e f i n e ghos t
d e f i n e keep (x)
d e f i n e n u l l
d e f i n e pos t (x)
d e f i n e pre (x)
d e f i n e pure

e n d i f

Listing 1. Extract from file arc.h

i n c l u d e ” a r c . h ”
i n c l u d e < s t r i n g . h>

c o n s t i n t s y s t e m E r r o r = 0 , i n p u t E r r o r = 1 , commandError = 2 ;
s t a t i c c o n s t char array ∗ e r r o r M e s s a g e s [] = {” System ” , ” I n p u t ” , ”Command” } ;

s i z e t b u i l d M e s s a g e (i n t type , c o n s t array char∗ l o c a t i o n , array char∗ d s t)
pre (0 <= t y p e ; t y p e <= e r r o r M e s s a g e s . upb)
pre (i s N u l l T e r m i n a t e d (l o c a t i o n))
pre (d s t . d i s j o i n t (l o c a t i o n) ; d s t . d i s j o i n t (e r r o r M e s s a g e s [t y p e]))
pre (s t r l e n (l o c a t i o n) + 10 + s t r l e n (e r r o r M e s s a g e s [t y p e]) <= d s t . upb)
{

s t r c p y (d s t , e r r o r M e s s a g e s [t y p e]) ;
s t r c a t (d s t , ” e r r o r i n ”) ;
s t r c a t (d s t , l o c a t i o n) ;
re turn s t r l e n (d s t) ;

}

s i z e t t e s t ()
{

char b u f f e r [5 0] ;
re turn b u i l d M e s s a g e (i n p u t E r r o r , ” I /O module ” , b u f f e r) ;

}

Listing 2. Error message function and client code

to facilitate proof of termination, and loop invariants (the
keep clause) to justify the correctness of the loop. The 34
verification conditions arising from this example are dis-
charged by the automated prover in less than 30 seconds
on a personal computer of modest performance. Of these
verification conditions, 15 relate to operator preconditions
(mostly index-in-bounds), 6 to correct initialisation of the
loop, and 9 to correct behaviour of the loop. The remaining
4 demonstrate that the return value of the function satis-
fies its specification. The proofs can be viewed at http:
//www.eschertech.com/arcpaper/proofs.

7. Help with annotations

In our previous experience with Perfect Developer, we
have observed that users quite often miss out trivial pre-
conditions and loop invariants, such as conditions for array
indices to be in bounds. This led us to enhance the verifier
so as to produce suggested amendments to the specification,
when proofs cannot be found and certain conditions are met.
For example, if an unproven verification condition involves
only the values of inputs to a function, it is very likely that
the user forgot to state the required condition as a precon-
dition of the function; so the verifier will suggest it as an
additional precondition.

This mechanism is also operational when we use the
verifier on C programs. If, in our first example, we

remove the preconditions from the declaration of function
buildMessage, the verifier makes a number of suggestions
including the following:

Add extra precondition: 0 <= type
Add extra precondition: type <= 2
Add extra precondition: isNullTerminated(location)

It is harder for the verifier to make useful suggestions
in more complex cases, for instance if we remove some of
the loop invariants from our second example.

8. Conclusions and further work

In this paper we have demonstrated the annotation of
two small C programs with specifications, in order that they
may be verified with respect to freedom from run-time er-
rors and (in the second example) with respect to a stated
requirement. The binary search example is not trivial, but
such is the state-of-the-art in automated reasoning technol-
ogy that our prover had no trouble in generating all the nec-
essary proofs without user intervention (our prover is non-
interactive by design).

We have found that applying the Design-by-Contract
paradigm to C programs requires a substantial amount of
annotation. Whereas SPARK starts from a well-designed
language (i.e. Ada) which it subsets in the interest of verifi-

i n c l u d e ” a r c . h ”

/ / Find t h e i n d e x o f t h e l o w e s t e l e m e n t t h a t compares w i t h or above t h e parame te r
i n t s e a r c h (c o n s t array double ∗ t a b l e , i n t s i z e , double x)
pre (s i z e == t a b l e . l im)
pre (f o r a l l i in 0 . . t a b l e . upb ; j in 0 . . t a b l e . upb :− ! (i >= j) | | t a b l e [i] >= t a b l e [j])
pos t (r e s u l t >= 0 ;

r e s u l t <= s i z e ;
f o r a l l z in 0 . . (r e s u l t − 1) :− x > t a b l e [z] ;
f o r a l l z in r e s u l t . . t a b l e . upb :− x <= t a b l e [z])

{
i n t i = 0 , k = s i z e ;
whi le (i != k)

change (i ; k)
keep (0 <= i ; i <= k ; k <= t a b l e . l im)
keep (f o r a l l z in 0 . . (i − 1) :− x > t a b l e [z] ;

f o r a l l z in k . . t a b l e . upb :− x <= t a b l e [z])
d e c r e a s e (k − i)

{
i n t mid = (i + k) / 2 ;
i f (x > t a b l e [mid])
{

i = mid + 1 ;
}
e l s e
{

k = mid ;
}

}
re turn i ;

}

Listing 3. Implementation of a binary search algorithm

ability, and the notation of our own Perfect Developer was
specifically designed for safety and verifiability, the C lan-
guage is in comparison poorly suited to verification. How-
ever, by the careful introduction of additional keywords
such as array and null to mitigate weaknesses of C, we
have reduced the volume of preconditions and other spec-
ification annotations required in order to make verification
possible while still allowing the use of a standard compiler.
Thus, although we consider it preferable to use SPARK or
Perfect Developer in language-agnostic situations, automat-
ing the generation of correctness proofs does appear to be
possible where practical considerations dictate the use of C.
In some cases, missing annotations can be suggested auto-
matically by the verifier; however manual review of such
suggestions is advisable.

The Verified Design-by-Contract paradigm works well
for functions that are exposed to external callers, as they
permit verification of the called function to be done inde-
pendently of verification of the caller. However, the bene-
fits of annotating simple functions that cannot be called ex-
ternally, such as C functions with static scope, are less
clear. One possibility is to “inline” such functions at the
points at which they are called, so that they do not require
specification.

A significant problem with verification of software writ-
ten in conventional programming languages is the need for
loop invariants. Some invariants for simple loops can be
deduced fairly easily - for example, those needed to ensure
that array indices are within bounds - but determining all the
loop invariants required for more complex cases such as our
binary search example remains a challenge. Our preferred
approach is to provide higher-level constructs to avoid the
need to hand-code loops. For example, we find that in soft-
ware written in Perfect, only 8% of loops in the final code
are derived from explicit loops in the source, with the re-
mainder being generated from constructs such as quantified
postconditions. This is of no use when the programmer is
constrained to write in a lower-level language. However,
some work has been done on the automatic generation of
loop invariants [7], [8] and we hope to apply this to our own
research in the future.

References

[1] P. Cousot and R. Cousot, Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints (ACM POPL
1977).

[2] J-R. Abrial, The B-Book: Assigning Programs to Mean-
ings (Cambridge University Press, 1996).

[3] American National Standard for Information Systems -
Programming Language C, ANSI X3.159-1989 (Ameri-
can National Standards Institute, 1989).

[4] ISO/IEC 9899-1999, Programming Languages - C (In-
ternational Standards Organization, 1999).

[5] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte, The Spec# programming system: An overview
(CASSIS 2004, LNCS vol. 3362, Springer, 2004).

[6] K. Rustan M. Leino, Greg Nelson, and James B. Saxe,
ESC/Java User’s Manual (Technical Note 2000-002,
Compaq Systems Research Center, October 2000).

[7] Jamie Stark and Andrew Ireland, Invariant Discovery
via Failed Proof Attempts (Lecture Notes in Computer
Science 1559, 271-288, 1999).

[8] K. Rustan M. Leino, Francesco Logozzo, Loop Invari-
ants on Demand (APLAS 2005, 119-134).

[9] J. V. Guttag and J. J. Horning, Introduction to
LCL, A Larch/C Interface Language (available at
http://ftp.digital.com/pub/Compaq/SRC/research-
reports/abstracts/src-rr-074.html).

[10] MISRA-C:2004 - Guidelines for the use of the C lan-
guage in critical systems (Motor Industry Software Reli-
ability Association 2004, ISBN 0 9524156 2 3).

[11] D. Crocker and J. Carlton, A High Produc-
tivity Tool for Formally Verifed Software Devel-
opment (Escher Technologies, 2004. Available at
http://www.eschertech.com/papers/pdpaper.pdf).

[12] J. Barnes, High Integrity Software: The SPARK Ap-
proach to Safety and Security (Addison Wesley 2003,
ISBN 0-321-13616-0).

[13] David Evans and David Larochelle, Improving Secu-
rity Using Extensible Lightweight Static Analysis (IEEE
Software, Jan/Feb 2002).

[14] David Crocker, Safe Object-Oriented Software: the
Verified Design-by-Contract paradigm (Proceedings of
the Twelfth Safety-Critical Systems Symposium (ed.
F.Redmill & T.Anderson) 19-41, Springer-Verlag, Lon-
don, 2004. ISBN 1-85233-800-8).

[15] J.-C. Fillitre, Why: a multi-language multi-prover
verification tool (Research Report 1366, LRI, Universit
Paris Sud, 2003).

[16] Jean-Christophe Fillitre and Claude March, Multi-
Prover Verification of C Programs (Lecture Notes in
Computer Science 3308, 15-29, 2004).

