WWYV 2005 Preliminary Version

Generating commercial web applications from
precise requirements and formal specifications

David Crocker !

Escher Technologies Litd.
Aldershot, United Kingdom

John H. Warren 2

Precision Design Technology Ltd.
Maidenhead, United Kingdom

Abstract

We present a new model-based approach that we are using to build commercial web-
based applications. The user requirements together with a data model are formally
specified in a graphical notation using the CREATIV toolset. The specification may
be checked by animation before being automatically translated to Perfect notation.
The Perfect Developer toolset uses automated reasoning to generate formal proofs
of correctness. It then generates C++ or Java code which, in conjunction with
an application framework also written in Perfect, forms the complete application
including the HTML user interface. The whole process provides a rapid turnaround
from new requirements to a formally-verified application.

Key words: formal specification, formal verification, web
applications

1 Introduction

A recent survey of 1027 information technology projects [1] found that only
12.7% were deemed successful. Poor requirements were considered to be a
contributory factor in 76% of the failing projects. These figures indicate that
a better approach to IT system development is needed and that any new
approach must include better definition of requirements. We present such an
approach.

! Email: dcrocker@eschertech.com
2 Email: john.warren@precisiondesign.co.uk

2 Defining Requirements with CREATIV

One important specification dichotomy is that while user understanding re-
quires the use of natural language, correctness requires the precision of a
mathematical approach. The CREATIV approach offers an improved process
for requirement specification that aids user understanding by using natural
language while ensuring consistency and functional correctness by using con-
cealed mathematical logic.

The underlying approach is model-based and axiomatic [2]. A proof in an
axiomatic theory is a finite sequence of statements in the theory in which each
statement either is an axiom or derives from an earlier statement by applying
a rule of reasoning. The CREATIV reasoning process uses five axioms and
one rule of inference, which reads informally as: IF a candidate entry satisfies
its preconditions THEN add the entry to the specification AND include the
consequential closure that results from its addition. The tool imposes some
of the preconditions and the application itself imposes others. The reasoning
occurs in a metamodel that represents the requirements process, represented
in first order predicate calculus; the metamodel construction is also axiomatic,
and uses identical axioms and rules of reasoning.

Starting from the axioms and the rule of inference, we can prove a succes-
sion of theorems at a very low level. There are several hundred such theorems,
which are used as lemmas to support higher level proofs. We then present the
reasoning system, specified in its own notation, for proof in exactly the same
way. We can then present the application specification similarly. This layered
organisation of the approach has an important advantage: we can express
reasoning about specification behaviour (animation) as one more layer in the
reasoning process and one that uses the same approach and rule of inference.

The tool can translate a correct specification into other languages, such
as Perfect or 7, because there is one well-defined meaning associated with
each theorem. When we translate into Perfect, which has its own more pow-
erful theorem prover, we can also generate a large number of hypotheses, by
rule, that express properties that the application code should possess. Users
may also state further hypotheses, arising from their own knowledge. We ex-
pect all these hypotheses to be provable; proof failures almost always indicate
important specification errors.

Translation to Perfect also allows immediate generation of Java or C++4, so
the production of web-based systems can be automated once the specification
is complete. We guarantee that any proven property will be present in the
generated system.

In order to construct a specification using this approach, it is necessary to
construct the business model (diagram) and the supporting information (text).
While analysts can enter information in any order, it is usual to develop a part
of the diagram first, then to add the supporting text, using form-filling dia-
logues, and finally to check this partial specification or model. Analysts can

[:){ title_added_to_stock]

— T, L04 LO5
lf vy
| [available_stock J:> ED[current_member):>
I ' Log - L12
| Y Y
| E:{ borrowing_request]
| = e A L15
| | A4
| | [current_loan]::}
I | I T
“ | — — — Lo4 | L24

\ 4

I II:{ returned_item]

l |

l L14

Fig. 1. Library model

then correct any errors and extend the partial model by repeating the above
process. The CREATIV workbench supports this process and retains all the
entered material in an underlying database. Analysts can make new entries
in the database and change or delete existing entries. At user request, the
workbench checks that all the entered facts are provable and self-consistent,
by translating the database content into a formal notation, attempting math-
ematical proof, and reporting any proof failures. Since this is at user request,
specifications can be temporarily inconsistent during their development; this
makes those constructs that involve iteration and circularity easier to define.

We define a specification as an assembly of five structured collections of
information; of these, three contain the data, functions, and events of the
application. Of the other two, concepts conjoin data, function, logic, and
event material to provide a view of the data within a class; constraints (or
business rules) establish how data moves between processes within the system.
Each constraint defines a data flow line, the specific data transfer (defined by
one or more predicates), and the type of flow that occurs. Each destination
concept includes a logical expression that must be satisfied before any flow
can occur.

Each collection (data, function, event, concept, and constraint) contains
one or more relational tabulations of facts relevant to the requirement spec-
ification. The entry of these facts constitutes the specification process. The
CREATIV specification workbench guides users through this entry process
with no reference to any mathematical notation. The totality of this informa-
tion allows the derivation of a formal specification that will support detailed
reasoning. In particular, we can predict the behaviour of the specification to
arbitrary sequences of input data; this not only allows users to test the correct-
ness of the specification but also provides acceptance test data and expected
results.

The notation is similar to the Business Activity Diagram of UML but
provides more detail. An example is shown in Fig. 1, which represents a
lending library. The library acquires books (concepts that accept external
events are marked with an input arrow), each entered as title_added_to_stock.
For each such entry, the LO5 constraint transfers selected attribute values to
represent available_stock, that is, items available for loan. We similarly enter
each current_member, who must be traceable if he is to borrow books, though
in this case there is no consequential inference. The L12 broken line indicates
read-only access to this data.

Any person can make a borrowing_request for any book but only members
can borrow books (L12) and members can only borrow available books (L09).
Requests by non-members are unsatisfiable, as are requests for non-present
books. If the logic “L09 AND L12” is satisfied (both values are true) then
the borrowing_request is accepted. An entry is added to current_loan to reflect
the loan (L15) and as a further consequence, the item is deleted from avail-
able_stock (L04), indicating that the item is no longer available. The dashed
line indicates a logical inversion.

Upon completion of the loan, the borrower returns the book and this event
is entered in returned_item. Provided that the entry matches a borrowed item
(as required by L.24), the matching entry is deleted from current_loan (L14)
and reinstated in available_stock (L04), since the deletion is now inverted.
If we enter a small number of books and members, we can test the model
specification by submitting borrowing request and returned item events (both
sound and faulty).

This simple model is inadequate as a library model; but because it is easy
to understand, it is easy to enquire about its deficiencies. For example: how do
we limit the number of loans to one borrower? How do we represent members
who leave the library?

The CREATIV tool can reason about the model to verify that the spec-
ification is self-consistent. Next, we can animate the specification in order
to demonstrate the behaviour of the model to users of the proposed system,
allowing specification correctness to be tested. It is entirely usual for initial
versions of a specification to contain errors; the analyst corrects these until
the users agree the correctness of the specified behaviour.

Documentation is generated automatically, by direct deduction from the
specification facts. We can produce a structured English specification, UML
documentation such as interaction diagrams, and various additional elements
such as checklists and tabulations.

3 Generating and Verifying the Application with Per-
fect Developer

Perfect Developer [3], [4] is an object-oriented formal tool which provides for
the definition of state-based specifications and related functional requirements.

It also has facilities for manual or automatic refinement to a lower-level spec-
ification, from which C+4++ or Java code can be generated. Included is an
automated reasoning engine which attempts to prove that the specifications
are complete and consistent, the specifications meet the requirements, and the
refinements preserve the observable behaviour apart from resource usage.

The Perfect specifications generated by CREATIV are designed to work in
conjunction with an application framework that has been written directly in
Perfect. These specifications include a model of the relational database tables
needed to represent the data, and a large number of operations specifying how
the state is to be changed in response to various events. Also generated is a
partial data dictionary, for use in generating HTML screens to interact with
the user.

The application framework provides the base classes from which classes in
the CREATIV-generated specification are derived. It automates the gener-
ation of HTML pages for user interaction and the parsing of returned form
data. A small supporting library allows it to be built as a web application
using the CGI interface. We have not yet made much effort to achieve full
formal verification of the framework, so at present only 92% of the 1108 proof
obligations that it gives rise to are discharged automatically. Most of the fail-
ures relate to proof obligations from library components used to perform file
I/O and match regular expressions, rather than from the framework itself.

4 Case Study

As a commercial example of this approach, we have specified part of a web-
enabled database system for a UK government department. We have currently
specified about 10% of the system; this appears as 1340 specification clauses
and translates at present to 35,799 lines of Perfect. The subsequent code gen-
eration produces 62,224 lines of Java. Perfect Developer also generates 9,819
proof obligations relating to the CREATIV-generated files, all of which are
proven automatically. The entire generation process (axiomatic specification
proof, translation to Perfect, and construction of Java code) takes less than
30 minutes on a laptop machine of modest speed (750 MHz). Complete proof
by Perfect Developer of the generated obligations requires about 4 hours 20
minutes on the same machine (averaging about 1.6 seconds per proof).

5 Related Work

Automatic code generation for large parts of web applications from semi-
formal or informal specifications (such as UML) is widely used. An approach
to the construction of web applications from formal specifications is outlined
in [5]. The use of formal specifications for testing web applications has been
proposed by a number of authors including [6].

6 Conclusions and Further Work

We have shown that it is possible and practical formally to specify and verify
a substantial part of a web-based commercial application, and to generate
code from the specifications. We contend that the generated system is inher-
ently immune to buffer overflow attacks. This will be proven formally when
we achieve complete verification of the application framework and associated
library.

There are some limitations to the present version of the workbench. Both
reasoning systems are founded on predicate calculus and are unable to reason
about temporal properties, non-functional properties or concurrency. CRE-
ATTV uses the relational model for information storage; this may not be the
best representation for some applications.

In the future we intend to specify formally a subset of the W3C HTML 4.01
definition in Perfect. This will allow us to prove not only that the application
always generates well-formed HTML pages, but also that the system is immune
to cross-site scripting attacks.

References

[1] Taylor A, IT Projects Sink or Swim. In “BCS Review 2001”, British Computer
Society. Available at
http://www.bcs.org/review/2001/articles/itservices/projects.htm.

[2] Warren J.H and Oldman R.D, A Rigorous Specification Technique for High
Quality Software. In “Proceedings of the Twelfth Safety-Critical Systems
Symposium” (ed. F.Redmill and T.Anderson) 43-65, Springer-Verlag (London)
(2004). ISBN 1-85233-800-8.

[3] Crocker D, Safe Object-Oriented Software: The Verified Design-By-Contract
Paradigm. In “Proceedings of the Twelfth Safety-Critical Systems Symposium”
(ed. F.Redmill and T.Anderson) 19-41, Springer-Verlag (London) (2004). ISBN
1-85233-800-8 (also available via http://www.eschertech.com).

[4] Crocker D and Carlton J, A High Productivity Tool for Formally Verified
Software Development. To be published in the International Journal of Software
Tools for Technology Transfer, Special Section on Formal Methods 2003.

[5] Fons J, Pelechano V et al., Eztending an OO Method to Develop Web
Applications. The Twelfth International World Wide Web Conference,
Budapest, Hungary.

At http://www2003.o0rg/cdrom/papers/poster/p329/p329-fons.htm.

[6] Xiaoping Jia and Hongming Liu, Rigorous and Automatic Testing of Web
Applications.
At http://jordan.cs.depaul.edu/research/web-test-paper.htm.

	Introduction
	Defining Requirements with CREATIV
	Generating and Verifying the Application with Perfect Developer
	Case Study
	Related Work
	Conclusions and Further Work
	References

