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1. Introduction

1.1 Purpose of this manual

This manual is the definition document for the Perfect Developer Language (Perfect). Newcomers to Perfect
should use it in conjunction with a tutorial such as the one to be found on the Escher Technologies Ltd. web
site.

1.2 Status of this edition

The syntax and semantics given in this edition of the Perfect Developer Language Reference Manual are
intended to be final except for the following areas which need to be completed:

Various items flagged [TBD] are subject to review• 
Further Static Constraints [SC] and Verification Conditions [PO] need to be documented• 
Further clarification may be needed in some areas• 

1.3 Organization

This manual is structured such that each chapter builds upon the syntax described in previous chapters, with
minimal need for forward reference.

Notes enclosed in square brackets have various purposes, as follows:

[TBD] - indicates an area of the language design subject to review.

[SC] - indicates a static constraint which the compiler must check; it must report an error if the condition is
not satisfied.

[PO] - indicates a verification condition (or proof obligation) which must be generated by the compiler and
passed to the theorem prover for proving.

[IMP] - implementation note.

1.4 Syntax used to describe the grammar of Perfect

Character sequences appearing in bold are keywords of the language and represent themselves.

Character sequences appearing in italics represent nonterminal symbols of the language.

Strings of one or more punctuation characters within double quotes represent themselves.

Where a construct appears within square brackets, the construct is optional. If the opening square bracket is
preceded by an asterisk, the construct may appear zero or more times in sequence at that point.
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Two or more constructs separated by a vertical bar indicates that the constructs are alternatives. Round
brackets may be used to delimit the scope of the vertical bar.

The colon separates the left hand side of a production from the right hand side. The semicolon separates
multiple alternate right-hand sides from each other (i.e. it is similar to a vertical bar but has a lower
precedence).

Comments in the grammar are introduced by a hyphen and terminated by end-of-line.

For example, the lexical form of a Perfect identifier can be described as:

Identifier :
        (letter | "_") *[letter | digit | "_" ].

Perfect Language Reference Manual, Version 7.0, February 2017.
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2. Goals and principles of the language

2.1 Design goals

The main design goals of the Perfect language are as follows:

Provability. It should be possible to construct proofs of program correctness.• 
Expressibility. The language should be sufficiently expressive for a very wide range of problems.• 
Safety. The language must be safe to use for the development of critical systems.• 
Object-oriented support. The language should support object-oriented development without forcing
object-oriented methods on the user where they convey no benefit.

• 

Portability. There should be no implementation-dependent language features. Any
implementation-dependent limits (other than run-time memory and other resource limitations) should
be such that the compiler can report if they are exceeded. If a program which does not refer to features
of the environment compiles successfully under two implementations, and its specification is
deterministic, it should produce identical results in both cases (except for execution time differences).
[Note: this requirement may be relaxed in the case of floating-point types, as a concession to
execution efficiency, and in recognition that hardware conformance to the IEEE standard is of
variable quality.]

• 

Clarity. The language must be strongly typed and make it clear when the value of a variable or
parameter is changed.

• 

Productivity. An experienced user should be able to construct correct programs rapidly, and to read
programs written by others.

• 

Ease of learning. The language should not be difficult for a typical analyst/programmer to learn.
Mastery of Perfect should be easier to achieve than mastery of C++.

• 

Implementability. It must be possible to translate Perfect programs to run efficiently in a wide range
of computer environments.

• 

2.2 Principles

Major principles of Perfect include the following:

Specification of entities is done separately from describing their implementations. Descriptions of
implementations are optional in those cases where the translator is capable of generating an
implementation.

• 

Minimisation of side-effects (to promote provability). The evaluation of an expression is not
permitted to have side-effects apart from the creation of new objects. All changes to variables must be
explicit (i.e. the variable must be identified and the context must clearly indicate that its value is
changed).

• 

Reduced need for explicit pointers in comparison to traditional programming languages. This is
because the use of pointers makes programs very hard to reason about (due to the pervasive nature of
aliasing and side-effects which abound).

• 

Economy of concepts (to promote ease of learning).• 
Orthogonality. Language constructs may be used in combination and their semantics are combined
naturally.

• 

Automatic storage management (to promote productivity and correctness).• 

2. Goals and principles of the language 3



Minimal implicit type conversions (to promote correctness, clarity and safety).• 
Conciseness of frequently-used constructs and symbols (to promote productivity). Most keywords are
abbreviated (usually to a single syllable). Infrequently-used keywords are written in full (or at least
have longer abbreviations) for clarity.

• 

The meaning of the program does not depend in any way on characters that are typically invisible
when the source is printed out or viewed using an editor. For example, non-displayable control
characters are illegal; blanks and tabs at the end of a line have no significance. This promotes clarity
and safety.

• 

2.3 Context

It is assumed that in the future, Perfect developers will work in the context of a document-centred Integrated
Development Environment (although it is also required that any Perfect program can be expressed in plain
ASCII text form for listing and porting purposes). For this reason, Perfect differs from some other
programming languages in the following ways:

A wider range of symbols is used when displaying programs; however, since users will generally have
keyboards supporting standard character sets, such symbols have simple equivalents (e.g. the
predecessor operator will normally be displayed as a downward-pointing arrow, but the equivalent
symbol for this is "<").

• 

The concept of a file containing part of a complete program is not central to Perfect. Information
hiding is intended to be done by the IDE, not by splitting a specification into separate parts in
different files. However, a traditional multiple-file compilation model is also supported (initially, it is
the only model supported).

• 

Since a Perfect program may be held as a single large document, the language allows for the compiler
to recompile only affected sections of the document when changes are made.

• 

Most declarations may be forward-referenced without restriction.• 
The grammar does not require the parser to distinguish identifiers used as type names from other
identifiers (making it possible to parse portions of Perfect text without the need for context
information).

• 

Perfect Language Reference Manual, Version 7.0, February 2017.
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3. Lexical form

3.1 Overview

Although Perfect programs are normally represented using an extended character set in an integrated
development environment, they can be represented in the standard ASCII character set or in Unicode. This
chapter describes how the character set is used to express the various tokens of the language.

3.2 Character set

The character set used by Perfect comprises the letters A through Z and a through z, the digits 0 through 9 and
the following special characters:

 . , ; : ? ! ' " ` + - * / % & | ( ) { } [ ] < > ~ # ^ _ = \ @

[SC] Other printable characters supported by the underlying character set are legal only in comments and in
character and string literals. Nonprintable characters other than those characters or character combinations
used to represent space, newline and horizontal tab are illegal in Perfect text, except that a nonprintable
character or character combination representing end-of-file may be present at the very end of the program if
allowed by the underlying file system and character representation.

It is recommended that when printing or displaying Perfect text, tab stops are considered to exist every 4
space-character widths from the left hand margin.

[Note: the character "$" is the only printable 7-bit character in the ASCII set that is not used.]

3.3 Comments

Comments are introduced by two adjacent forward slash characters ("//") and terminate at the end of the line.
The last line in a file is always considered as having an end, even if there is no end-of-line marker before the
end of the file.

3.4 White space

Comments, and newline, space and tab characters (other than those within comments, and space characters
within string and character literals) are collectively known as whitespace. Multiple adjacent whitespace
elements are equivalent to a single whitespace.

Whitespace may occur between any two program tokens but not within an identifier, literal, reserved word or
multi-character token. Whitespace may, however, appear between two tokens that construct a new operator
from an existing one according to the rules of the language. Whitespace must occur between a pair of adjacent
tokens if the beginning of the second would otherwise be a legal continuation of the first (e.g. between a
reserved word and an identifier).
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3.5 Multi-character tokens

The multi-character tokens of the language are:

  <=  >=  <<   >>  <<=  >>=   <==  ==>  <==>  ||   ~~  ^=  :-  ::  ->  <-   <->  ++  --  ** ##  .. 
...

Where an input character sequence can be interpreted in more than one way, the lexical analyser picks the
longest leading sub-sequence that forms a token, then applies the same rule to the remainder of the input
sequence. For example, "=>>" would be interpreted as "=>"followed by ">", not as "=" followed by ">>",
even if the former interpretation gave rise to a parsing or other error message and the latter did not.

3.6 Reserved words

The reserved words of the language are:

abstract    absurd    after    any    anything    as    assert    associative    axiom    bag   
begin    bool    build    byte    catch    change    char    class    commutative    confined   
const    decrease    deferred    define    done    early    end    enum    exempt    exists  
false    fi    final    float    for    forall    from    function    ghost    goto    has    heap   
highest    if    idempotent    identity    implements    import    in    inherits    int   
interface    internal    invariant    is    it    keep    let    like    limited    loop    lowest   
map    nonmember    null    of    on    opaque    operator    out    over    pair    par    pass   
post    pragma    pre    proof    property    rank    real    redefine    ref    repeated   
require    result    satisfy    schema    selector    self    seq    set    storable    super   
supports    tag    that    then    those    throw    total    trace    triple    true    try    until   
value    var    via    void    when    within    yield

Reserved words are case-sensitive. Note that float, implements, supports and trace are not used at present,
but are reserved for future use.

The following words are not reserved but are names for built-in global methods and are therefore best
avoided:

debugHalt    debugPrint    flatten    interleave    loadObject    max    min    storeObject    swap

Similarly, the following words are names for built-in classes and are also best avoided:

ByteData    ByteStream    CharDecoder    CharEncoder    CharEncoderDecoder   
Comparator    DebugType    Environment    FileAttribute    FileError    FileHandle   
FileMode     FileModeType    FilePath    FileRef    FileStats    FileStream    GuardedObject   
InputStream    nat    OsInfo    OsType    OutputStream    ReverseComparator    SerialError   
SerialErrorType    SimpleComparator    Socket    SocketError    SocketMode   
StandardInputStream    StandardOutputStream    Storable    StreamBase    StreamHeap   
string    Time

Perfect Developer Language Reference Manual Version 6.0

3.5 Multi-character tokens 6



3.7 Identifiers

Identifiers comprise a letter or underscore character optionally followed by any number of characters each of
which is a letter, digit or underscore character, provided only that the resulting string is not a reserved word.
There is no limit on the length of an identifier. All characters in an identifier are significant. The case of letters
is significant.

3.8 Character literals

Literals of type char are written as the desired character between opening-single-quote symbols thus:

`a`

The backslash character has a special meaning within character literals in that the backslash character and one
or more of the characters following it are replaced by a single character, as follows:

\a alert (bell)

\b backspace

\f form feed

\n line feed

\r carriage return

\t horizontal tab

\v vertical tab

\\  \

\` `

\" "

\(ddd) the character represented by the integer literal ddd

In the case of the form `\(ddd)`, ddd is any integer literal such that the resulting integer is within the range
appropriate to the character set in use. There must be no whitespace between the brackets and the integer
literal.

The use of any other character following the initial backslash is illegal. The amount of storage associated with
each character and the character set supported are implementation dependent (a typical implementation might
offer a choice of ASCII or Unicode).

[SC] Exactly one printable character, space character or backslash combination equivalent to one character

Perfect Developer Language Reference Manual Version 6.0
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must appear between the quotes. If the `\(ddd)` form is used then the integer literal ddd must in be the range of
the supported character set.

3.9 String literals

Literals of type "sequence of characters" (seq of char) are written as a sequence of characters enclosed in
double quotes. The backslash character has the same special meaning as it does in character literals and every
backslash sequence gives rise to a single character in the string. The closing quote must be on the same line as
the opening quote.

Within a character or string constant, nonprintable characters (including newline and tab characters) are not
permitted, and comments are not recognised.

[SC] The sequence between the quotes must comprise only printable characters, space characters and valid
backslash sequences.

3.10 Integer literals

An integer literal is written as a sequence of decimal digits, or as a sequence of hexadecimal digits (0-9 and
A-F or a-f) preceded by 0X or 0x, or as a sequence of binary digits preceded by 0B or 0b. There is no fixed
limit on the size of integer literals, however if the compiler or target uses bounded integers, an error message
will be generated in respect of any integer literal that cannot be represented. The case of any letter forming
part of an integer literal is not significant.

Underscore characters may be inserted within the sequence of digits (but not at the start or the end) to improve
readability.

3.11 Real literals

Real literals are written in the form s.s or ses or s.ses where s is any sequence of decimal digits and e is the
letter e or the letter E optionally followed by a minus sign. The digit string following e or E is interpreted as a
decimal exponent. White space is not permitted within a real literal. Each digit string s may contain embedded
underscore characters to improve readability.

Perfect Language Reference Manual, Version 7.0, February 2017.
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4. Classes and Types

4.1 Overview

Perfect provides a number of fundamental data types, from which more complex types may be built.

4.2 Concepts of type

4.2.1 Classes

In Perfect the term class is used to mean a set of allowed values which is not a proper subset of any other
Perfect class nor a union of types.

There are eight predefined non-template classes in Perfect (anything, int, real, bool, char, byte, void, and
rank). Note that int is not considered to be a subset of real, and byte is not considered to be a subset of int.

Each instance in a program of the keyword enum or the keyword tag creates a new class which is distinct
from all other classes (including classes created by identical declarations elsewhere in the program).

Each occurrence of an abstract class declaration also creates a new class that is distinct from all other classes
(including classes created by identical class declarations elsewhere in the program).

4.2.2 Types

In Perfect a type defines a set of allowed values and may be a class, a class associated with a constraint, or a
union of types.

A constraint is a predicate that takes a single parameter representing values of the class and returns true for
values that are permissible values of the type.

When binding occurrences of functions and operators to their declarations, most constraints are ignored,
however, constraints within template parameters must match exactly.

Declaring entities with constrained rather than unconstrained types has the following effects:

4.2.2.1 Constraints on variables and data members

When declaring a variable or a data member of a class, there is a proof obligation that the constraint is
satisfied whenever the value of the variable or data member is changed, thereby increasing the degree of
validation performed.

A second effect of constraining a variable or data member is that it permits the code generator to allocate a
more efficient form of storage. For example, an integer variable with a constraint that the value lies in the
range 0 to 100 permits the code generator to use a simple fixed-length binary representation instead of the
more general format used to store unbounded integers.

4. Classes and Types 9



4.2.2.2 Constraints on parameters

When declaring the type of a parameter in a function, operator or schema declaration, the constraint becomes
a part of the precondition of that function, operator or schema. It also allows the code generator to optimize
the mechanism used for parameter passing.

4.2.2.3 Constraints on results

When declaring the type of a function or operator result, or of a schema parameter which is modified by the
schema, the constraint gives rise to an additional proof obligation (i.e. that the result or final value of the
parameter belongs to the specified type). It may also allow the code generator to optimize the mechanism used
to return the result.

4.2.2.4 Constraints on bound variables

When declaring the type of a bound variable (i.e. following one of the keywords exists, forall, that, any or
for), the effect is that the bound variable ranges only over the permitted values, instead of over all values of
the class.

4.3 Predefined classes

The predefined classes of Perfect are as follows:

anything The base class for all other classes, containing member function "toString"

bool The Boolean class, comprising the values true and false

byte The class of eight bit bytes

char The character set supported by the environment (including control characters)

int The (unbounded) positive and negative integers (including zero)

real
The real numbers. These are represented using the double-precision (64-bit) format defined
in standard IEC559:1989 (IEEE 754)

void The void type, comprising the single value null

rank The enumeration comprising the values "below", "same" and "above" (in that order)

The base class anything is deferred; all other predefined classes are final classes (see Chapter 7 for the
definitions of these terms).

4.4 Predefined types

There are two predefined types that are not classes:

Perfect Developer Language Reference Manual Version 6.0

4.2.2 Types 10



nat Subset of int consisting of unbounded positive integers and zero

string Equivalent to seq of char

4.5 Literals for predefined classes

The section on lexical form has already described character literals (which have type char), string literals
(which have type seq of char), integer literals (which yield non-negative values of class int) and real literals
(which yield non-negative values of class real). Negative literals of class real and int are not directly
represented but suitable constants can be constructed from positive literals and the negation operator.

Literals of the bool and void classes are written directly (i.e. as true, false and null).

4.6 Class declarations

New classes may be added by three mechanisms: enumeration, tag generation, and abstract class declaration.
Each such class must be named at the point of generation using the syntax:

ClassDeclaration:
 EnumerationDeclaration;
 TagDeclaration;
 AbstractClassDeclaration.

4.6.1 Enumeration generator

Classes may be generated by enumeration of values. The syntax for this is:

EnumerationDeclaration:
 class Identifier "^=" enum Identifier *["," Identifier] end.

An enumeration is collection of values having an ordering relation. The lowest and highest operators (see
section 5.4.1) may be applied to the enumeration class to obtain the first and last elements respectively.
Predecessor and successor operators may be applied to values of enumerated classes (except for the first and
last elements respectively). The comparison operator "<" is defined such that each value is considered to be
less than all values declared later in the enumeration list.

Every enumeration in a program yields a new class. Two enumerations with identical lists of values yield
distinct classes. The identifiers in the list are treated as non-member constants of the enumeration class, and
thus must always be referred to by using the enumeration class name to resolve the scope of the value name.
For example, given the following declaration:

class Color = enum red, green, blue end

then a value would be referred to as e.g. Color red. See section 5.4.14 for more on scope resolution.
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4.6.2 Tag generator

The tag generator yields a class comprising a set of ordered un-named values. It may be thought of as an
enumeration where we have asked the compiler to generate the names for us. The syntax is:

TagDeclaration:
 class Identifier "^=" tag ["(" Expression ")"].

The optional expression (which must yield a positive integer) is the number of distinct values we require. If no
expression is given, the set of distinct values provided is sufficiently large that it will not be exhausted at
run-time before some other resource (e.g. memory) is exhausted.

The usual comparison operators are defined on the values. The lowest operator may be used to obtain the
lowest tag available and the predecessor and successor operators may be used on tag values. If an expression
is given, the highest operator may be used to obtain the highest member of the set.

Every tag constructor yields a (notionally) unique set of values.

[TBD: should we require the expression to be constant at run-time throughout the scope of the declaration? Or
constant at compile-time?]

4.6.3 Abstract class declarations

These are covered fully in Chapter 7.

4.7 Type expressions

Types may be expressed in terms of classes and other types in a number of ways:

By using a non-template class name• 
By providing a class template name with type or class names to use as actual parameters, thereby
instantiating it

• 

By associating an existing type or class name with a constraint• 
By uniting two or more types• 
By forming the union of all abstract classes that inherit from a particular abstract class• 

The full syntax for type expressions is:

PossConstrainedTypeExpression:
 ConstrainedTypeExpression;
 TypeExpression.

ConstrainedTypeExpression:
 those Identifier ":" TypeExpr1 ":-" Predicate;
 TypeExpr3 ComparisonOperator Expr4;

        "(" ConstrainedTypeExpression ")".
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TypeExpression:
 TypeExpression "||" TypeExpr1;
 TypeExpr1.

TypeExpr1:
 ref TypeExpr2 on Identifier;
 TypeExpr2.

TypeExpr2:
 from ClassName;
 TypeExpr3.

TypeExpr3:
        "(" TypeExpression")";
        ClassName.

ClassName:
 TemplateName of ActualTemplateParameters;
 TypeName.

TypeName:
 anything;
 bool;
 byte;
 char;
 int;
 rank;
 real;
 Identifier.

TemplateName:
 bag;
 map;
 pair;
 seq;
 set;
 triple;
 Identifier.

ActualTemplateParameters:
 TypeExpr1;
 class Identifier;

        "(" TypeExpression *[Separator TypeExpression] ")".

Separator:
        ",";
        "->";
        "<-";
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        "<->".

ComparisonOperator:
        "~" CompareOp;

 CompareOp.

CompareOp:
        "=";
        ">";
        "<";
        ">=";
        "<=";
        ">>";
        "<<";
        ">>=";
        "<<=";

 in.

4.8 Instantiating class templates

A class template is instantiated by following its name with the keyword of and a list of class parameters,
which are types. If there is only one parameter and it is a type name or template instantiation, it need not be
enclosed in brackets, otherwise brackets are required. The separators in the parameter list must match the
separators in the corresponding template class declaration.

4.9 Constrained types

A type may be formed by constraining an existing class or type. Two forms of syntax are available for
expressing this.

The more general form is "those BoundVariableDeclaration :- Predicate" where Predicate is a function of the
bound variable. Since the those construct is delimited by the end of the type expression, if this form is used
within a larger type expression, either it must be the last element, or it must be enclosed in brackets. An
example of this form would be "those x: nat :- x <= 100".

The abbreviated form is "TypeExpr4 CompareOp Expr4" which is equivalent to the full form "those xx: Type
:- xx CompareOp Expr4". So the above example could be written "nat <= 100".

Another abbreviated form is possible in some contexts (see section 6.4).

4.10 United types

Sometimes the value of a variable, parameter or function return may belong to one of several types. In this
case we can create a united type using the uniting operator "||"; for example "nat || void". The "||" symbol is
pronounced "united with" or simply "or".
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The uniting operator is commutative and associative, for example "nat || (void || char)" yields the same union
as "char || nat || void".

[SC] The operands of "||" must be disjoint.

4.11 Union of all derived classes

Sometimes it is desirable to express the type comprising the union of the values of all classes derived from
some base class (including the values of the base class itself). This is expressed using the notation "from
ClassName", where ClassName is the name of a class or a class template instantiation.

4.12 Reference types

An entity of a reference type refers to some value created on a heap. Other entities of reference type may refer
to the same value; any changes to the value are therefore visible to all reference entities which refer to it.

When declaring a reference entity, the type (or types) of the value to which it refers must be declared, together
with the name of the heap on which the entity will be created.

Note that the use of reference types is the sole mechanism for creating aliases.

4.13 Type naming

It is possible to introduce new names for types, with optional generic parameters. The syntax for this is:

TypeDeclaration:
 class Identifier [of FormalTemplateParameters] "^=" PossConstrainedTypeExpression.

FormalTemplateParameters:
 Identifier;

        "(" Identifier *[Separator Identifier] ")".

For example, we could declare:

>

class Word ^= seq of char

or:

class ListOfLists of X ^= seq of seq of X

4.14 Predefined class templates

Predefined class templates are provided for six common ways of collecting values of similar types: sets, bags,
sequences, pairs, triples and mappings.
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4.14.1 Sets

A set comprises a collection which includes none, some or all the values of its base type. It is meaningless to
speak of a value occurring in the set more than once. For example, if we consider the set of prime numbers,
every positive integer either does or does not belong to the set.

To build a set in a non-ghost context (i.e. in a context where code must be generated) requires that the base
type has a non-ghost equality operator. See section 7.1.7 for a full explanation of when the equality operator
of a type is ghost.

The name of the class template is set so that, for example, "set of char" is the type expression for a set of
characters.

4.14.2 Bags

A bag is a collection of values in which it does make sense to ask how many times a value occurs. For
example, if we were interested in collecting statistics on examination results but wished to preserve the
anonymity of the candidates concerned, we would be interested only in the marks obtained. Since multiple
candidates might score the same marks and we wish to record this, the appropriate data type would be a bag of
examination marks.

Like a set, a bag may only be constructed in a ghost context, or with a base type with non-ghost equality.

We construct a bag type using the template name bag, e.g. "bag of nat".

4.14.3 Sequences

The third type of collection is the sequence, or list of values. Sequences are used where the order of values is
important. We construct a sequence type using the template name seq, e.g. "seq of char". The same value
may occur more than once in a sequence. There is no requirement on the equality operator for constructing
sequences.

4.14.4 Pairs

The class "pair of (X, Y)" is used to describe and construct mapping classes. The abstract data members of a
pair are a variable of type X named "x" and a variable of type Y named "y".

4.14.5 Triples

The class "triple of (X, Y, Z)" is similar to "pair". The abstract data members of a triple are variables of types
X, Y and Z named "x", "y" and "z" respectively.

4.14.6 Mappings

A mapping has a set of values (the domain) paired with a bag (the range) such that every member of the
domain is associated with exactly one member of the range. Mappings are useful for describing lookup tables
and relational databases. We express a mapping class using an arrow-symbol pointing from the type on the

Perfect Developer Language Reference Manual Version 6.0

4.14.1 Sets 16



left (the domain type) to the type on the right (the range type) as the separator in the class parameter list, e.g.
"map of (char -> nat)".

Like sets and bags, a mapping in a non-ghost context requires a non-ghost equality operator on both the
domain and range types.

Note that a sequence can be regarded as a mapping from a range of integers to some other type. This is
reflected in the fact that the indexing and domain member functions may be applied to both sequences and
mappings. However, the class "seq of X" is considered distinct from "map of (nat -> X)" and all its
subclasses.

The abstract data of "map of (X ->Y)" is "those v:set of pair of (X, Y) :- (for x::v.rep(1) yield
x.dom).unique".

4.15 Type compatibility

4.15.1 Overview

The presence of unions and subtyping in the type system of Perfect gives rise to various ways in which two
types can be related. All semantic rules governing the use of types can be expressed in terms of four
fundamental binary relations on types: disjoint (have no common values), same (are equivalent), overlapping
(have a common value) and nested (the first type is a subtype of the second). Three of the relations are
symmetric; the only exception is 'nested'. Interdependencies between the four relations are shown on the
following Venn diagram where each point represents an ordered pair of Perfect types:

For example, if the type given by type expression X is nested in the type given by Y then types X and Y are
also overlapping, not disjoint and can be (but do not have to be) equivalent.

In simple cases the way in which two given types are related trivially follows from their definitions. However,
the high expressive power of Perfect means that it is possible to define types that are complex enough to make
relations between them less than obvious. Therefore, each of the four fundamental relations is given an
unambiguous formal definition. The role of these definitions is similar to that of the formal grammar of the
language: both can be used to verify validity of arbitrarily complex language constructs and both are
instrumental in the compilation process. The latter role of formal type relations has some far-reaching
implications: for example, in Perfect it is possible to guarantee that any conceivable call to an overloaded
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function will be unambiguous, i.e. no call can possibly type-match more than one variant of the function
declaration. This is not even a proof obligation - the "collective consistency" of overloaded declarations is
checked by the type inference logic of the compiler based on the formally defined type relations, and any
potential ambiguity is reported as an error.

4.15.2 Fundamental type relations

Each type relation is defined by means of a binary predicate on types: for example, the type given by
expression X is regarded as a subtype of the type given by expression Y if and only if nested(X,Y) is true.
Each of the four predicates is, in turn, defined by collections of clauses; the clause that applies to a particular
case is chosen by means of pattern matching according to the syntactical structure of the operands (Perfect
type constructors are shown in the definitions in bold face, as is the auxiliary tag 'strict' that has no counterpart
in Perfect syntax). Upper-case letters in patterns denote arbitrary type expressions while lower-case Latin
letters denote type names. Symbol x in rules (n1) and (n2) represents a polymorphic type name introduced in
the declaration of a polymorphic function: in actual Perfect programs this position will be occupied by an
identifier. It is possible for a pair of parameters to match more than one clause in the same predicate
definition. Such ambiguities are resolved by textual precedence: for example, nesting of a union into another
union is governed by the rule (n8) rather than (n9) or (n12). Definitions of all four fundamental type relations
are complete, as each predicate definition contains a clause that will match any pair of parameters.

Type namings without constraints do not affect relations between types, and are therefore removed before any
type relation is evaluated. In addition, constraints are removed except from within template parameters. For
example, "seq of string" becomes "seq of seq of char", whereas "seq of nat" remains the same.

Where removing all constraints from within template parameters would change the result of evaluating a type
relation we say that the relation is not defined. For example, "same(seq of nat, seq of int)" is undefined. When
we say "X relation Y" we mean the relationship is true, not false or undefined.

Further to that, the following transformations are assumed to be performed before applying the type relation
rules:

All unions are flattened: "(a || b) || (c || d)" is replaced by "a || b || c || d"• 
Instantiations of templates by a single class are rewritten in the bracketed form: "t of x" is replaced by
"t of (x)"

• 

All occurrences of polymorphic type names in declarations are prefixed by the keyword "class":
"f(a:seq of class x, b:ref x)" is replaced by "f(a:seq of class x, b:ref class x)"

• 

The purpose of these transformations is to get rid of syntactical sugar and to represent the type expressions in
a uniform format; this reduces the number of clauses required to define the fundamental predicates without
affecting their semantics. Actual implementations of Perfect do not have to transform the types and may use
more complex systems of rules instead, as long as the final result stays the same in all cases.

Auxiliary binary predicate 'derived' is defined on type names and reflects the inheritance hierarchy that exists
in the program. Namely, derived(a,b) yields true if and only if both 'a' and 'b' denote classes and class 'a' is a
descendant of class 'b' or coincides with it.

Predicate disjoint(type1, type2): no value can belong to both type1 and type2
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This predicate is simply a logical negation of overlapping:

(d1)       disjoint(A, B)  ==  ~ overlapping(A, B)

Predicate same(type1, type2): type1 and type2 are equivalent

Equivalence is defined as mutual nesting (see the diagram):

(s1)       same(A, B)  ==  nested(A, B) & nested(B, A)

Predicate overlapping(type1, type2): a value can belong to both type1 and type2

A type overlaps with a union if it overlaps with at least one of its members:

(o1)       overlapping(A, B1 || B2 || ... || Bk)  ==  exists i::1..k :-overlapping(A, Bi)

It does not matter whether a union occurs as the first or the second argument, as 'overlapping' is a symmetric
relation:

(o2)       overlapping(A1 || A2 || ... || Ak, B)  ==  overlapping (B, A1 || A2 || ... || Ak)

There are no other non-trivial cases of overlapping; the rest can only be clean nesting. (Note that because of
the absence of multiple inheritance, two 'from' families cannot overlap without being nested.)

(o3)       overlapping(A, B)  ==  nested(A, B) or nested(B, A)

Predicate nested(type1,type2): all values of type1 also belong to type2

The first four rules deal with polymorphic type names in function declarations. When a function call is
checked for compliance to a function declaration (which is essentially parameter-wise type nesting plus
fulfilling the constraints), polymorphic type names can occur on the declaration side only. However, because
of the symmetric way in which equivalence is defined in (s1), rules (n2) and (n4) are also necessary. Note that
rules (n1) and (n2) have side-effects: all further occurrences of the polymorphic type name in question are
replaced by the opposite operand prefixed by a special tag "strict". Together with rules (n3) and (n4) this
enforces the requirement that all types occurring in the positions of a function call that correspond to different
occurrences of the same polymorphic type name must be equivalent.

(n1)    nested(A, class X)  ==  true, class X <- strict A
          nested(class X, A)  ==  true, class X <- strict A

(n3)    nested(A, strict B)   ==  same (A, B)

(n4)    nested(strict A, B)  ==  same (A, B)

Trivial cases with type names and derived families:

(n5)    nested(a, b)   ==  a = b
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(n6)    nested(a, from b)  ==  derived(a, b)

(n7)    nested(from a, from b)  ==  derived(a, b)

A union can only be nested in other type if all its members are nested in that type:

(n8)    nested(A1 || A2 || ... || Ak, B)  ==  forall i::1..k :- nested(Ai, B)

The only way for a (non-union) type to be nested in a union is to be nested in one of its members:

(n9)       nested(A, B1 || B2 || ... || Bk)  ==  exists i::1..k :- nested(A, Bi)

References are not transparent for subtyping:

(n10)     nested(ref A, ref B)  ==  same(A, B)

Two template instantiations are either disjoint or equivalent:

(n11)     nested(a of(A1, ..., Ak), b of(B1, ..., Bn))  ==  a = b & k = n & forall i::1..k :- same(Ai, Bi)

There are no other ways in which one type can be nested into another:

(n12)     nested(A, B)  ==  false

4.15.3 Examples

Example 1

Is "seq of b || seq of d" a disjoint union, provided class "d" is a descendant of class "b" ?

            disjoint(seq of (b), seq of (d))                                                                 (d1)
=          ~ overlapping(seq of (b), seq of (d))                                                       (o3)
=          ~ (nested(seq of (b), seq of (d)) | nested(seq of (d), seq of (b)))            (n11)
=          ~ (same(b,d) | same(d,b))                                                                        (s1)
=          ~ ((nested(b,d) & nested(d,b)) | (nested(d,b) & nested(b,d))                    (n5)
=          ~ ((false & false) | (false & false))
=          true

Therefore this is a valid union.

Example 2

Is "a || int" a subtype of "int || real || from a" ?

            nested(a || int, int || real || from a)                                                           (n8)
=          nested(a, int || real || from a) & nested(int, int || real || from a)               (n9)
=          (nested(a, int) | nested(a, real) | nested(a, from a)) &
                (nested(int, int) | nested(int, real) | nested(int, from a))                      (n5)
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=          (false | false | nested(a, from a)) & (true | false | false)                        (n6)
=          (false | true) & true
=          true

Yes: the first of these types can be used where the second one is required.

Example 3

Is "ref (a || b)" equivalent to "ref a || ref b" ?

            same(ref (a || b), ref a || ref b)                                                                (s1)
=          nested(ref (a || b), ref a || ref b) & nested (ref a || ref b, ref (a || b))

Starting with the left operand of 'and',

            nested(ref (a || b), ref a || ref b)                                                              (n9)
=          nested(ref (a || b), ref a) | nested(ref (a || b), ref b)                                 (n10)
=          same(a || b, a) | same (a || b, b)                                                                (s1)
=          (nested(a || b, a) & nested(a, a || b)) | (nested(a || b, b) & nested(b, a || b))

Let us deal with the leftmost term first:

            nested(a || b, a)                                                                                        (n8)
=          nested(a, a) and nested(b, a)                                                                    (n5)
=          true and false
=          false

In the same way, nested(a || b, b) = false and therefore the answer to the original question is negative.

Perfect Language Reference Manual, Version 7.0, February 2017.
© 2017 Escher Technologies Limited. All rights reserved.
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5. Expressions and Operators

5.1 Overview

Like traditional programming languages, Perfect provides a rich set of operators for constructing expressions.
Perfect operators can be overloaded (i.e. the meaning of the operator depends on the types of its operands). To
avoid ambiguity, no conversions between classes are automatically applied to operands, apart from widening
conversions where the parameter is declared with a union type (note that from types are unions) and the actual
parameter is of a type nested in that union.

However, when binding an occurrence of a function or operator to the correct definition, any operand of a
type which is not a complete class will be treated as if it belongs to the complete class. For example, an
operand of type nat will be treated as if it were of type int. Likewise, if the type naming is used to give a
name to some original type with an added constraint, the operand will be treated as belonging to the original
type (unless that type is also a type-naming, in which case this rule is applied recursively). Where necessary,
verification conditions are generated to the effect that any constraints on the formal parameters are satisfied
(this is the only place where the compiler generates an implicit type narrowing).

The full grammar for expressions is as follows:

Expression:
 PrimableExpression;
 UnprimableExpression.

PrimableExpression:
 PrimableExpr8;
 PrimableCastExpression.

UnprimableExpression:
 UnprimableCastExpression;
 TypeWideningExpression;
 TypeEnquiryExpression;
 TypeAssertionExpression;
 SubjunctiveExpression;
 ChooseExpression;
 QuantifiedExpression;
 TransformExpression.

Expr0:
 Expr0 BooleanImplicationOperator Expr1;
 Expr1.

Expr1:
 Expr1 "|" Expr2;
 Expr2.
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Expr2:
 Expr2 "&" Expr3;
 Expr3.

Expr3:
 Expr3 ComparisonOperator *[Expr3 ComparisonOperator] CompareExpr;
 CompareExpr.

CompareExpr:
 Expr4 "~~" Expr4;
 Expr4 ["~"] [in | like] Expr4;
 Expr4.

Expr4:
 Expr4 AddingOperator Expr5;
 Expr5.

Expr5:
 Expr5 MultiplyingOperator Expr6;
 Expr6.

Expr6:
 Expr6 "^" Expr7;
 Expr6 ".." Expr7;
 Expr7.

Expr7:
 UnaryPrefixOperator Expr7;
 AllowedOverOperator over Expr7;
 TypeOp TypeName;
 PrimableExpr8;
 UnPrimableExpr8.

UnPrimableExpr8:
 UnprimableBracketedExpression;
 UnPrimableExpr8 "[" Expression "]";
 UnPrimableExpr8 "." value;
 PrimableExpr8 "'";
 UnPrimableExpr8 "." IdentifierOrSuper [ActualParameterList];
 ref Expression on Identifier;
 ConstructorExpression;
 Literal;

        "?".

PrimableExpr8:
 PrimableBracketedExpression;
 PrimableExpr8 "[" Expression "]";
 PrimableExpr8 "." value;
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 PrimableExpr8 "." IdentifierOrSuper [ActualParameterList];
 GeneralIdentifierOrSuper [ActualParameterList];
 self;
 result;
 it.

IdentifierOrSuper:
        [super] Identifier.

GeneralIdentifierOrSuper:
 ClassName Identifier;
 IdentifierOrSuper.

ActualParameterList:
        "(" Expression *[Separator Expression] ")".

ConstructorExpression:
 ClassName "{ " [Expression *[Separator Expression]] "}".

Literal:
 IntegerLiteral;
 RealLiteral;
 StringLiteral;
 CharacterLiteral;
 BooleanLiteral;
 VoidLiteral.

BooleanLiteral:
 true;
 false.

VoidLiteral:
 null.

AllowedOverOperator:
 AddingOperator;
 MultiplyingOperator;

        "^"; "..".

BooleanImplicationOperator:
        "==>"; "<=="; "<==>".

AddingOperator:
        "+"; "++"; "-"; "--".

MultiplyingOperator:
        "*"; "**"; "/"; "%"; "%%"; "#"; "##".
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UnaryPrefixOperator:
        "/"; "%"; "#"; "*"; "+"; "-", "<"; ">"; "^"; "~".

5.2 Functions, Selectors and Constructors

Perfect provides three variations of the concept of function, together with constructors. All share the property
of having no side-effects, i.e. they behave like mathematical functions.

A function takes one or more parameters and yields a result (in the case of a class member function, it is
permitted for a function to take no parameters). An operator is identical to a function except that it is written
as a symbol and takes exactly one or two parameters.

A selector is similar to a function except that it must be a member of a class, its return value must be a
sub-object of the current object and a selector expression may appear primed in a postcondition; that is, the
selector provides a mechanism to access a sub-object in such a way that it may be modified.

A constructor is used to build objects of a given class. It is a special form of function declared within a class
and returning an object of that class.

Definitions of predefined global functions, and of functions, selectors and constructors declared by predefined
classes are given in the Library Reference, which is Appendix A of this document.

5.2.1 Using functions and selectors

A function or selector is called by writing its name followed by its parameter list in brackets, if the function
has any parameters; if there are no parameters, no brackets are required. Where there is more than one
parameter, adjacent parameters are separated using any of the separators ",", "->", "<-" and "<->". The
separators used in the actual parameter list must match those given in the formal parameter list (overloading
of functions with identical argument types by using different separators is possible). For details of type
compatibility of the parameters, and how to match repeated parameter groups, see section 6.11.

As an alternative to being given a name, a selector may be represented by square brackets, in which case it
must take a single parameter. In this case it is called by following an expression of the type that the selector is
a member of by the parameter enclosed in square brackets.

5.2.2 Using constructors

A constructor for a class is called by following the name of the class (including any template parameters) by a
parameter list enclosed in curly brackets "{...}". The curly brackets are always used in a constructor call, even
if the parameter list is empty (unlike the parameter list for function and selector calls). As with function and
selector calls, a constructor may be declared with repeated parameters, see section 6.11.

5.3 Operators

Definitions of operators declared by predefined classes are given in the Library Reference, which is Appendix
A of this document.
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5.3.1 Unary operators

The following unary operator symbols are available.

Symbol Typical use Redefinable? Comments

* Yes

/ Yes

% Yes

# Count Yes

+ Convert to integer Yes

- Negation Yes

< Predecessor Yes May be represented by ↓ (down-arrow) if the
character set allows

> Successor Yes May be represented by ↑ (up-arrow) if the
character set allows

^ Yes

~ Logical negation No

A unary operator is invoked by prefixing the operand symbol to the parameter.

5.3.2 Binary operators

The following binary operator symbols are available.

Symbol Priority Typical use Prefix
with
"~"?

Redefinable? Comments

[ ] 9 Indexing No Yes Second operand is placed
inside the brackets

^ 8 Exponentiation No Yes

.. 8 Make sequence No Yes Defined automatically for
enumeration classes

* 7 Multiplication No Yes
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/ 7 Division No Yes

% 7 Remainder No Yes

# 7 Count No Yes

** 7 Intersection No Yes

%% 7 No Yes

## 7 Disjoint No Yes

+ 6 Addition No Yes Defined automatically for
enumeration classes

- 6 Difference No Yes

++ 6 Union, concatenation No Yes

-- 6 Set difference No Yes

~~ 5 Comparison No Yes Must return type rank and be
defined so as to have the
correct symmetry and
transitivity properties. May be
declared total in which case
additional restrictions apply.
Defined automatically (and
total) for all enumeration
classes.

in 5 Inclusion Yes Yes

like 5 Type equality Yes No Returns true if and only if the
exact types of the operands are
the same at run-time

= 4 Equality Yes No

< 4 Less-than Yes No Defined automatically from
the definition of "~~"

> 4 Greater-than Yes No Equivalent to "<" with
operands reversed

<= 4 Less-than-or-equal Yes No Defined automatically from
the definition of "~~" provided
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that the definition of "~~" is
declared total

>= 4 Greater-then-or-equal Yes No Equivalent to "<=" with
operands reversed

<< 4 Strict inclusion Yes Yes

>> 4 Strict reverse
inclusion

Yes No Equivalent to "<<" with
operands reversed

<<= 4 Inclusion Yes Yes

>>= 4 Reverse inclusion Yes No Equivalent to "<<=" with
operands reversed

& 3 Logical 'and' No No "a & b" is equivalent to "([~a]:
false, []: b)"

| 2 Logical 'or' No No "a | b" is equivalent to "([a]:
true, []: b)"

==> 1 Implication No No "a ==> b" is equivalent to
"(~a) | b"

<== 1 Reverse implication No No "a <== b" is equivalent to "a |
~b"

<==> 1 Equivalence No No Same as "=" on Booleans but
lower priority

A binary operator is invoked using infix notation; except that when invoking the "[]" operator, the first
operand is placed on the left and the second operand is placed within the square brackets.

Where the column "Prefix with ~?" reads "Yes", the operator has a Boolean result and the operator may be
prefixed by "~" to yield a similar operator producing the inverse result. For example, "a ~< b" has the same
meaning as "~(a < b)".

The comparison operators (i.e. all the operators with priority 4) may share operands in expressions. Such
expressions are expanded by duplicating the shared operand(s) and inserting "&" between each comparison.
For example, the expression "a < b <= c < d" means the same as "(a < b) & (b <= c) & (c < d)".

The "[]" symbol may also be used to declare a selector.

5.3.3 Equality operator

The equality operator is treated specially in three ways:
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Equality is automatically defined by the system for all user-declared abstract classes. It is defined to
yield true if all abstract data variables of the operands are correspondingly equal (excluding any
variables within when-clauses whose guards yield false). Equality operators may not be defined by
the user, although the user may provide a refinement (i.e. an implementation).

• 

The equality operator is not inherited; it is implicitly called by all descendent classes' equality
operators. This means equality can be declared ghost in a class even if its parent class did not declare
its equality as ghost. A consequence of this is that equality is normally ghost on the type "from T"
unless T (or one of its ancestors) specifically declares it as non-ghost.

• 

It is permitted to apply the equality operator between two values of arbitrary types provided only that
the static types of the left and right operands have a common subtype (i.e. an inspection of the types
of the operands alone does not rule out the possibility of the values being equal).

• 

5.3.4 Rank operator

The rank operator "~~" defines a partial ordering and is automatically defined by the system for all classes
which do not have a user-defined relative rank operator.

Any declaration of the rank operator in some class C must ensure that the following relations hold for all
expressions e1, e2 and e3 having type C:

e1 = e2 ==> e1 ~~ e2 = same@rank• 
e1 ~~ e2 = same@rank <==> e2 ~~ e1 = same@rank• 
e1 ~~ e2 = below@rank <==> e2 ~~ e1 = above@rank• 
e1 ~~ e2 = same@rank ==> e3 ~~ e1 = e3 ~~ e2• 
e1 ~~ e2 = below@rank & e2 ~~ e3 = below@rank ==> e1 ~~ e3 = below@rank• 

The system also defines the binary operator "<&quot in terms of the rank operator using the following
identity:

e1 < e2 <==> e1 ~~ e2 = below@rank• 

Where the rank operator has been defined as total then only equal values may return same@rank, and the
system will define the binary operator "<=" using the following identity:

e1 <= e2 <==> e1 ~~ e2 ~= above@rank• 

5.3.5 Type comparison operator

The like operator compares the types of its operands at run-time and returns true if the actual types are the
same, otherwise false. Both operands should be of united types (note that a from type expression is a united
type), and the types of both operands must have a common subtype (so that a type match is possible).

5.3.6 Operator precedence

The relative precedence of operators in many programming languages is difficult to remember, leading to
over-use of brackets. With this in mind, the precedence structure of Perfect has been kept simple. Operators
are evaluated in the following order:
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Indexing and member are evaluated first ("[ ]" and ".").• 
Unary operators come next.• 
The exponentiation operators come next ("^" and "..").• 
The "multiplicative" operators come next (i.e. "*", "**", "#", "##", "/", "%" and "%%").• 
Then the "adding" operators ("+", "-", "++", "--").• 
Then the in, like and rank ("~~") operators• 
Then the comparison operators (anything which always produces a Boolean result, apart from in and
like).

• 

Then the Boolean operators in the order: "and", "or", "implies/equivalent"• 

Unary operators group right-to-left (the only order which makes sense, e.g. "- # x"). All binary operators
group left-to-right, except for the comparison operators, for which there is no grouping (because compound
operators are formed instead).

5.3.7 Suggested operator pronunciation

When reading Perfect text, it is helpful to have a standard pronunciation of the more unusual operators and
member names. Suggested pronunciations are:

Operator Suggested pronunciation

# "count" (or optionally "length" for the unary form with a sequence operand)

## "disjoint"

^ "to-the-power-of" (or "exp")

..  "up-to"

++  "join" (optionally "cat" for sequences)

-- "diff"

** "intersect"

> (unary) "next" or "successor"

< (unary) "previous" or "predecessor"

% "modulo"

>> "contains"

>>= "includes"

<< "is contained in"
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<<= "is included in"

~~ "compared with"

5.4 Other expression constructs

5.4.1 Operators on types

The operators highest and lowest may be applied to char or any enumeration type. Also, lowest may be
applied to any tag type, and highest may be applied to any finite tag type. The highest operator yields that
value such that there are no greater values in the type. The lowest operator yields that value such that there is
no lesser value of that type. The syntax is:

TypeOperatorExpression:
        TypeOperator Identifier.

TypeOperator:
 highest;
 lowest.

5.4.2 Brackets, temporary names, assertions, conditionalsand trace

Bracketed expressions may be used for the following purposes:

To force a particular evaluation order• 
To give names to subexpressions (in order to avoid repeating them, or to improve clarity)• 
To insert assertions into expressions• 
To cause trace output to be generated as expressions are evaluated• 
To express conditional expressions• 
To generate multiple expressions to return from a function• 

The syntax for bracketed expressions is:

PrimableBracketedExpression:
        "(" *[LetDeclarationAssertionOrTrace] PrimableExpression ")".

UnprimableBracketedExpression:
        "(" *[LetDeclarationAssertionOrTrace] PossMultipleExpressionOrChoice ")".

LetDeclarationAssertionOrTrace:
 let Identifier "^=" Expression ";";
 Assertion ";";
 TraceStatement ";".
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Assertion:
 assert PredicateList [Proof].

TraceStatement:
 trace Expression *[Separator Expression];
 trace Guard Expression *[Separator Expression].

PossMultipleExpressionOrChoice:
 PossMultipleExpression;
 Choices.

PossMultipleExpression:
 Expression *["," Expression].

Choices:
 GuardedExpression *["," GuardedExpression] ["," ElseExpression];
 opaque GuardedExpression "," GuardedExpression *["," GuardedExpression].

GuardedExpression:
 Guard Expression.

Guard:
        "[" Predicate "]" ":".

Predicate:
 Expression.

ElseExpression:
 EmptyGuard Expression.

EmptyGuard:
        "[" "]" ":".

5.4.2.1 Let declarations

Identifiers introduced using let are in scope from the declaration until the closing bracket. A let declaration
captures the value of the given expression and names that value.

5.4.2.2 Assertions

An assertion states a condition which must hold at that point. Every assertion generates a corresponding proof
obligation.

5.4.2.3 Trace statements

A trace statement causes the expressions following the keyword trace and the optional guard to be output in
some way. The expressions are output in the order in which they appear. If the guard is present, then the
expressions are only output if the guard is true. Expressions of type seq of char are output as-is. The toString
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member function is called on expressions of other types to convert them to a suitable form.

The data that is output by a trace statement is not considered part of the program output, and is therefore not
mentioned in the specification or reasoned about. However, the expressions in a trace statement must be
well-formed and the corresponding verification conditions are generated.

Trace output is intended for diagnostic purposes only. A code generator for Perfect may provide an option to
ignore trace statements, in order that they may be left in the specification without giving rise to generated
code in a production build of the system.

5.4.2.4 Choice expressions

The choice expression replaces the conventional "if" and "case" constructs. To evaluate the expression, the
guards are evaluated in the given order, until one is found to be true. The corresponding expression is then
selected for evaluation. If none of the guards is true and an else part is present, the else part is selected; if no
else part is present, the precondition of the construct is not satisfied.

For example, to compute the maximum of two expressions e1 and e2 we can use:

( [e1 >= e2]: e1, [e2 >= e1]: e2 )

At least one of the guarded expressions must be of a type that matches or contains the types of all the other
guarded expressions. The result type of a choice expression is that type.

Normally, the expression following the first guard that evaluates to true is chosen and any following guards
are not evaluated. However, if the first guard is preceded by opaque then the semantics are those of
nondeterministic choice between those expressions whose guards are true. In this case, no else-part (i.e. empty
guard) is allowed.

[PO: if no else-part is present, at least one guard evaluates to true. If opaque was used: each guard can be
evaluated; each expression can be evaluated if its guard is true. If opaque was not used: each guard can be
evaluated if the preceding guards are false; each expression can be evaluated if its guard is true and the
previous guards were false].

5.4.3 Choosing

A set, bag or sequence can be subjected to a filtering operation using the notation:

ChooseExpression:
 ChoiceType Identifier ":" TypeExpr2 ":-" Predicate;
 ChoiceType Identifier "::" Expr4 ":-" Predicate;
 ThatOrAny Expression.

ChoiceType:
 that;
 any;
 those.
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ThatOrAny:
 that ;
 any.

The meaning when the any choice type is used is: any value of the specified type or from the specified
expression (which must be a set, bag or sequence) such that Predicate is true. There must be at least one such
value. The meaning when that is used is similar, except that we are asserting that there is exactly one such
value. The result in both cases is a value belonging to the TypeExpr2 or the base type of which the Expr4 is a
collection. If the form without ":- Predicate" is used, it is equivalent to the full form with true substituted for
Predicate.

The meaning when the those choice type is used is the set, bag or sequence (depending on whether TypeExpr2
or Expr4 is a class or set, a bag or a sequence respectively) comprising those values in TypeExpr2 or Expr4
for which Predicate is true.

5.4.4 Transforms

A transform takes values from one collection and maps them onto a another collection (possibly of a different
type) on an element-by-element basis.

TransformExpression:
 for Identifier "::" Expr4 yield Expression;
 for those Identifier "::" Expr4 ":-" Predicate yield Expression.

The Expr4 must in either case have a type which is a set, bag or sequence; the result is a set, bag or sequence
(respectively) of elements of the type of the Expression. In the second form, only those elements of the Expr4
which satisfy Predicate are chosen. If the Expr4 is a sequence, the result is a sequence whose elements are in
the same order as the elements in the Expr4 from which they were generated.

Note that if the first form is used (i.e. without those keyword), then when the operand is a bag or sequence,
the result has the same number of elements as the operand; however, if the operand is a set, the result may
have fewer elements (because multiple elements in the operand may yield the same result value, and the result
is condensed into a set).

5.4.5 Quantified expressions

A quantified expression has the form:

QuantifiedExpression:
        (forall | exists) BoundVariableDeclarations ":-" Predicate.

BoundVariableDeclarations:
 BoundVariableDecl *["," BoundVariableDecl].

BoundVariableDecl:
 IdentifierList ":" TypeExpr2;
 IdentifierList "::" Expr4.
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IdentifierList:
Identifier *["," Identifier].

The result type is Boolean. If the form containing ":: " is used, the Expr4 which follows "::" must yield a set,
bag or sequence.

When the universal quantifier forall is used the meaning is "For all permitted values of the declared
identifiers, Predicate is true". If there are no permitted values (because the type of one of the declared
identifiers is an empty set or type), the expression yields true.

When the existential quantifier exists is used the meaning is "There exists a combination of permitted values
of the declared identifiers such that Predicate is true".

The two types of quantifier are related in the following manner:

(forall x:t :- p(x)) <==> ~(exists x:t :- ~p(x))

5.4.6 Cast expression

The cast expression is used to assert that some value whose static type is a union (expressed explicitly or
using the keyword from) is known to be of a narrower type, and to cast it to that type.

PrimableCastExpression:
 PrimableExpr8 is TypeExpression.

UnprimableCastExpression:
 CompareExpr is TypeExpression.

If a cast expression is used as an operand, it must be enclosed in brackets.

[SC] Type TypeExpression must be a type contained in the type of the PrimableExpr8 or CompareExpr.

[PO] Each use of a cast expression expr is type gives rise to the verification condition expr within type.

5.4.7 Type widening expression

The type widening expression is used to treat a value of some class as a value of a union (expressed explicitly
or using the keyword from) which includes that class. It may also be used to explicitly remove constraints
from a type (e.g. to cast an object of type nat to int).

PrimableCastExpression:
 PrimabeExpr8 as TypeExpression.

UnprimableCastExpression:
 CompareExpr as TypeExpression.

If a type widening expression is used as an operand, it must be enclosed in brackets.
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[SC] Type TypeExpression must be a type containing the type of CompareExpr. That is, it must be a union
containing the type, or a type with fewer constraints. If the types are identical a warning is generated.

5.4.8 Type enquiry expression

It is possible to enquire whether a value of a union type (including a union type generated using the from
keyword) is a member of one of the types from which the union type is formed, or a member of a subset of the
union (including a subset expressed using the from keyword). The syntax is:

TypeEnquiry:
 CompareExpr ["~"] within TypeExpression.

The result has type bool.

If a type enquiry expression is used as an operand, it must be enclosed in brackets.

Note that the types of two expressions can be compared using the like operator (see section 5.3.5).

5.4.9 Subclass expression

The subclass selector is used to assert that a value whose type is a union belongs to a subclass of that union, or
that a value known to be derived from some base class type is actually of a particular derived class, and in
either case to yield a value of that subclass or derived class. Its main use is to form operands of the correct
type for passing to functions and operators. It can also be used to assert that a particular constraint is satisfied
by a value.

SubclassExpression:
CompareExpr is TypeExpression.

If a subclass expression is used as an operand, it must be enclosed in brackets.

[SC] In this construct, either Expression has a union type and TypeExpression is a member of that type or a
subset of a member or a union of some (but not all) members of that union, or Expression has type "from
Classname" and TypeExpression is the name of a class derived from Classname. The compiler will report an
error if this condition is not satisfied (i.e. it is statically impossible for Expression to have type
TypeExpression at runtime). The compiler will report a warning if the type of Expression is statically the same
as TypeExpression.

5.4.10 Subjunctive expression

The subjunctive expression yields the value which an object would have if a schema which modifies it were to
be invoked. It does not actually modify the object concerned (a typical implementation might take a copy of
the object, modify the copy and yield the modified copy as the result). The syntax is:

SubjunctiveExpression:
 CompareExpr after Postcondition.
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[SC] Postcondition must be a postcondition which modifies the pronoun it and nothing else.

The subjunctive expression should only be used where the alternative means of specifying the value required
are cumbersome. For example, if a variable x is a class with abstract variable members a, b, c .. z and we wish
to express a value of the same type whose members all have the same values as the members of x except for a,
we might write:

x after it.a! = newa

instead of explicitly stating the values of all the members. Similarly, if y is an object of a class that includes a
modifying member schema normalize, we could write:

y after it!normalize

The postcondition following after is permitted only to modify the object denoted by the pronoun it (which is
a copy of the expression to the left of after). It may not modify objects addressed through references, since
such modifications might affect other objects.

The subjunctive expression provides the sole mechanism for specifying functions in terms of schemas.
Subjunctive expressions used as operands must be enclosed in brackets.

The full syntax for postconditions is described in section 6.8.2.

5.4.11 Over expression

The over expression "op over s", where "s" is a non-empty set, sequence or bag, and "op" is a binary operator
whose operand and return types are all equal to the type of the elements of "s", is defined in the case of a
sequence as follows:

([#s = 1]: that s, []: (op over s.front) op s.last)

In the case of a set or bag the definition is:

([#s = 1]: that s, []: (let tmp ^= any s; (op over s.remove(tmp)) op tmp))

[SC] The operator must not have any precondition.

[SC] If "s" is a set or bag, the operator must have been declared associative and commutative (see section
6.6.3).

[PO: The collection "s" is non-empty, unless a left identity has been declared for the operator].

5.4.12 Heap expression

The heap expression creates a value on a named heap and yields a reference to that value.

HeapExpression:
 ref Expression on Identifier.
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Here, Identifier must be the name of a heap. The type of the expression is a reference to the type of
Expression.

5.4.13 Value expression

The value selector UnprimableExpr8 "." value returns the value of an object on a heap. The expression must
be of type ref X on H, where X is some type, and H some heap, and returns the object of type X.

5.4.14 Converting between types

When an expression is used as an operand of a function or operator, the only type conversions that may be
invoked implicitly are widening conversions from a class to a union which includes that class (which includes
converting X to from X, X to from Y, or from X to from Y, where Y is an ancestor of X), and conversions
between types which are equal once all constraints have been removed (even if this involves adding new
constraints, for example int to nat). Other type conversions must be performed explicitly using constructors,
subclass expressions, operators and functions.

5.4.15 Scope resolution

To specify the class in which a non-member function or enumeration value is to be found, the name of the
function or value may be preceded by the name of the class, with the class name and function or value name
separated by white space only (i.e. class-name function-or-value-name). Enumeration values are treated as
non-members of the enumeration class, so must be referred to in this way. No scope resolution is required to
refer to non-members declared in the current class or one of its ancestors.

Note: older versions of Perfect Developer used the syntax function-or-value-name @ class-name. This syntax
is still supported, but deprecated.

5.4.16 "?" expression

This represents an expression whose value has deliberately not been specified yet. Typically, it may be used in
skeletal source files that do not yet need to be compiled but need to be included in other Perfect source files.

5.5 Writable, Limited-writable and Non-writable expressions

Any expression belongs to one of three categories: writable, limited-writable and non-writable. The category
of an expression is relevant within postconditions and implementations. A writable expression (sometimes
called an lvalue) may be changed in any way that conforms to its type (for example, it may be re-assigned). A
limited-writable expression may only be modified by calling a member schema of the type to which it
belongs, and its actual run-time type can never be changed by such an operation. A non-writable expression
cannot be written at all.

A writable expression is one of the following:

An identifier that binds to an implementation variable declaration• 
Within a function or operator postcondition, result• 
Within an implementation of a member method, an identifier that binds to an internal data member• 
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An identifier that binds to a schema parameter declaration decorated with "!" and not declared limited• 
A writable or limited-writable expression followed by ".Identifier", where the identifier binds to a
variable member declaration provided that the expression occurs within the class declaration.

• 

A writable or limited-writable expression followed by ".Identifier" and a parameter list (if required),
where the identifier binds to a selector member declaration or redeclaration whose result is not
declared limited

• 

A writable or limited-writable expression followed by an expression within square brackets, provided
that indexing has been declared as a selector (not an operator) for the class of the first expression and
the selector result type not declared limited

• 

A subclass expression whose operand is writable• 

A limited-writable expression is one of the following:

Within a constructor or modifying schema postcondition or implementation, self (the current object)• 
An identifier that binds to a schema parameter declaration decorated with "!" and declared limited• 
A type-widening expression whose operand is writable or limited-writable• 
A subclass expression whose operand is limited-writable• 
A writable expression which yields a reference, followed by ".value"• 
A writable or limited-writable expression followed by ".Identifier" and a parameter list (if required),
where the identifier binds to a selector member declaration whose result is declared limited

• 

A writable or limited-writable expression followed by an expression within square brackets, provided
that indexing has been declared as a selector (not an operator) for the class of the first expression and
the selector result type is declared limited

• 

5.6 Primed expressions

To "prime an expression" means to place a prime (single quotation mark) after it. Only writable and
limited-writable expressions may be primed, and only in contexts where the expression has potentially a final
value that differs from its initial value (e.g. postconditions, schema post-assertions, and implementations). In
such contexts, a primed expression refers to the final value of that expression; an un-primed equivalent
expression refers to the initial value of the expression.

In the context of a multithreaded environment, the term "initial value" is misleading and an unprimed
expression is taken instead to refer to "the value the expression would have had if the current thread had not
modified it".

Perfect Language Reference Manual, Version 7.0, February 2017.
© 2017 Escher Technologies Limited. All rights reserved.
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6. Modules and Declarations

6.1 Declarations

There are several sorts of declaration in Perfect:

Declaration:
 ConstantDeclaration;
 VariableDeclarations;
 HeapDeclaration;
 FunctionDeclaration;
 SelectorDeclaration;
 OperatorDeclaration;
 SchemaDeclaration;
 PropertyDeclaration;
 AxiomDeclaration;
 ClassDeclaration;
 TypeDeclaration.

Class and type declarations were covered in Chapter 4. This chapter describes the remaining types of
declaration.

6.2 Constant declaration

Constants are declared using the syntax:

ConstantDeclaration:
        [ghost] const ConstDeclItem *["," ConstDeclItem].

ConstDeclItem:
 Identifier [":" TypeExpression] "^=" Expression [NvImplementation].

The TypeExpression and preceding colon are optional if the Expression is a literal, constructor expression,
Boolean operator expression, quantified expression, type-widening expression or subclass expression;
otherwise it is mandatory. If a TypeExpression is given, the type of the Expression will be widened to match
it, if necessary.

If the optional ghost keyword is present, no code will be generated for the constants, and they may only be
used in 'ghost' contexts (i.e. preconditions, assertions, invariants, variants and implemented specifications).
The optional implementation tells the system how to calculate the value of the constant. Implementations are
covered in chapter 8.

6.3 Heap declarations

Heaps are declared as follows:
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HeapDeclaration:
 heap Identifier *["," Identifier].

A heap may be used to hold values of any number of types.

A heap declaration is visible wherever a class declaration at the same place would be visible.

6.4 Variable declarations

Variables are declared using the following syntax:

VariableDeclarations:
 var DataDeclarationList.

DataDeclarationList:
 DataDeclarations *["," DataDeclarations].

DataDeclarations:
 Identifier *["," Identifier] ":" PossConstrainedTypeExpression;
 Identifier ":" AbbrevTypeExpression;
 when Guard DataDeclarationList *["," Guard DataDeclarationList] end.

AbbrevTypeExpression:
 those TypeExpression ":-" Predicate.

The abbreviated form of type expression avoids the need to introduce a new bound variable name, since the
name of the single variable being declared can fulfil this function.

The when...end form is only permitted within the abstract or internal section of an abstract class declaration,
and allows the presence of one or more variables to be made conditional on the value of other member
variables. The Predicate within each Guard must be a function of variable members only, and may not
contain calls to member functions of the class being declared.

[TBD: we could require all the guards within a when clause to be mutually exclusive, then it might be
sensible to allow an "else" part as well. This would avoid a proliferation of styles and might improve
readability since conditional declarations which were unrelated would have to be in different when clauses.
However, there are other cases when it might be reasonable to have overlapping guards, e.g. "when [x=c]:
decls, [x=d]: decls, [x=c | x=d]: decls end".]

[Semantic note: declaring a variable v of type T within when...end is similar but not equivalent to declaring v
unconditionally with type "T || void", adding a class invariant that "v = null" whenever the corresponding
guard is not satisfied, and replacing all non-assigning occurrences of v by "(v is T)". Declaring the data as
guarded implies a stronger condition, since the data must be initialised whenever a postcondition modifies the
guard so that it becomes true, even on intermediate instances of self, which we allow not to satisfy the class
invariant. It is also legal to guard data which is of a type including void, whereas the previous construction
makes no sense in this case.]
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6.5 Function declarations

Like traditional programming languages, Perfect allows functions to be defined; however, Perfect functions
are pure in that they have no side-effects. The Perfect notion of a schema corresponds to a function with
side-effects in other languages.

A non-opaque function must either be a member of a class, or take at least one parameter. A constant
declaration (see section 6.2) should be used instead of declaring a deterministic function with no parameters.

6.5.1 Syntax of function declarations

FunctionDeclaration:
 FunctionHeader [ExceptionSpecification] [RequirePart] [pre PredicateList] [decrease

RecursionVariant] FunctionBody [PostAssertion].

FunctionHeader:
        [opaque | ghost] function Identifier ["(" FunctionParameterList ")"] FunctionType.

FunctionBody:
        "^=" PossMultipleExpression [Implementation];

 satisfy PredicateList [Implementation].

PostAssertion:
 assert "..." ["," PredicateList] [Proof];
 Assertion.

FunctionParameterList:
 FunctionParameters [Separator repeated FunctionParameters];
 repeated FunctionParameters.

FunctionParameters:
 FunctionParams *[Separator FunctionParams].

FunctionParams:
 Identifier *[Separator Identifier] ":" ParameterType.

ParameterType:
 class Identifier;
 TypeExpression.

FunctionType:
        ":" TypeExpression;

 FunctionTypeList *["," FunctionTypeList].

FunctionTypeList:
 Identifier *["," Identifier] ":" TypeExpression.
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PredicateList:
 Predicate *["," Predicate].

RecursionVariant:
        "..." ["," Variant];

 Variant.

Variant:
 Expression *["," Expression].

ExceptionSpecification:
 throw TypeExpression.

The parameter list comprises declarations of formal parameters, with parameters being separated by any of the
four separators ("," and the three forms of arrow). The keyword repeated indicates that the remaining formal
parameters may be matched by one or more matching sequences of actual parameters. If there is more than
one repeated formal parameter, the separators between the repeated formal parameters may not include
comma (this rule is imposed for clarity since comma is used to separate multiple sequences of actual
parameters matching the repeated parameters). Within the function declaration, the type of each repeated
formal parameter is "seq of X" where X is the declared type of the parameter.

The function result type may be declared as either a simple type or a list of simple identifier declarations
(similar to the declarations which may follow the keyword var). The second form is used for functions which
return more than one value; the effect is to declare an anonymous class with the declared identifiers as data
members. If this form is used for the declaration of a member function, the identifiers declared must be
distinct from all the class member names (including the names of inherited members).

The precondition, if present, comprises the keyword pre followed by a comma-separated list of predicates.
The predicates describe conditions (normally functions of the parameters and/or current class members) which
must all be true whenever the function is evaluated (i.e. all the predicates in the list are combined with the
logical "&amp" operator, and the resulting expression must yield true). If no precondition part is given, true is
assumed (i.e. the function will succeed for all values of its input parameters). The precondition must be
well-defined for all values of the parameters (i.e. the precondition for evaluating the precondition is true).

A variant part is only needed by recursive functions and serves to guarantee termination. It comprises the
keyword decrease followed by a list of expressions, each of which is of type int, bool, char or an
enumeration. If just one expression is given, this expression is guaranteed to decrease on every recursion but
never to become negative. If more than one variant expression is given, it is required that those expressions
having type int are non-negative and that on each recursion either the first expression decreases, or the first
expression remains constant and the variant consisting of the remaining expressions decreases according to
the same rule. A boolean variant expression is considered to decrease if its values changes from true to false.
The variant must be well-defined and its integral components non-negative whenever the function
precondition is satisfied.

The form of variant beginning "..." means that the subsequent variant terms should be appended to an
inherited variant. This form may only be used when overriding an inherited method with a variant, and in this
case it is compulsory.
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The function body defines the result of the function. If the function result is defined by the "^= " symbol and a
list of expressions, these expressions must be well-defined whenever the function precondition is satisfied,
and the number and types of the expressions must match the declared return types. Alternatively, the function
result may be defined using the keyword satisfy followed by a predicate list in which each predicate expresses
a condition on the predefined identifier result.

The optional post-assertion specifies any additional properties of the function result that are expected to hold.
These properties should be provable from the function definition. Within the post-assertion, the predefined
identifier result refers to the result of the function. Each expression in the post-assertion must refer to result.
The "... ," form of post-assertion may be used when the function overrides an inherited function that already
has a post-assertion; in this case the total post-assertion is the post-assertion of the overridden function
followed by the new post-assertion.

The optional implementation part tells the system on how best to implement the function. Implementations are
covered in Chapter 8.

The exception specification declares that any exceptions thrown by the function are within the declared type.
This type may be a union type, allowing exceptions conforming to any member type of the union to be
thrown. If no exception specification is given, then the function does not throw any exceptions.

Within all expressions in a member function declaration, members of the current class may be used
unqualified (they are implicitly prefixed by "self").

If the opaque keyword is given, the function is nondeterministic (i.e. two different calls to the same function
with correspondingly equal parameters may yield results which are not equal to each other); otherwise the
result must be precisely defined. Note that if the result includes a reference to a newly-constructed expression
on a heap, this guarantees that the function is nondeterministic, therefore the opaque keyword must be used in
this case.

The ghost keyword indicates that the function is used only in preconditions, class invariants, assertions,
variants, and in the result expressions and postconditions of a method or constructor for which an
implementation is given. It is therefore not necessary for the compiler to generate code for the function (unless
run-time checks are being generated).

[SC] The names of the parameters, the names of the returned values (if the multiple-returned-value form is
used) and (for a declaration of a member or nonmember function within a class) the names of accessible
members of the current class must all be distinct, in order to avoid ambiguity.

[PO: the precondition does not directly or indirectly refer to the function recursively; the precondition can
always be evaluated (i.e. its precondition is true); the variant and the function value can be evaluated
whenever the precondition is true; if the function result specification is directly or indirectly recursive, the
variant decreases on each recursion].

6.5.2 Polymorphic function declarations

In parameter declarations, instead of following the colon by an actual type, it may be followed by the
construct "class Identifier" to denote a class parameter. The same identifier may subsequently be used within
the parameter list, result type or function body as a type name (without the class prefix).
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This mechanism allows the construction of a polymorphic function (one which supports many operand types).
Any member methods of the unspecified class that are used by the function specification or body must be
declared in the optional require part (see section 7.4 for the grammar for RequirePart). The presence of these
members will be checked when the function is invoked.

It is permissible to have multiple class parameters in a parameter list.

Polymorphic type names cannot occur within unions or after from. This restriction is imposed to guarantee
that instantiation of polymorphic type names according to the actual parameter types is always unambiguous. 

When the same polymorphic type name occurs more than once in a formal parameter list, the types in the
corresponding actual parameter list of the call must be equivalent. This requirement is captured by the rules
(n1-n4) in the formal definition of nesting. For example, if a function is declared with the signature "f(e: class
X, s: seq of X)" then the call "f(p, q)" where "p" has type "a || int" and "q" has type "seq of int" is invalid: the
types of the actual parameters can not be nested in the types of the formal parameters simultaneously.

Whenever a polymorphic function is declared, an additional condition is implicitly appended to the
precondition; namely, that all methods declared in the require part must be declared for the actual operand
types at the point of call, and their preconditions must be satisfied whenever the function precondition is
satisfied.

6.5.3 Function usage

A function is invoked in the conventional way using its name followed by a list of actual parameters in round
brackets. Where there are no operands, no brackets are used.

Where a function returns more than one result, the function call may either be followed by "." and the name of
a member of the result (in order to select just one part of the result), or the entire result object may be captured
in a let declaration.

[PO: the function precondition (extended to cover operator definitions in the case of polymorphic functions) is
satisfied at the point of invocation.]

6.6 Operator declarations

Perfect also allows many of its own operator symbols to be redefined for user-defined classes. Operators are
declared in a similar way as functions except that "function identifier" is replaced by "operator symbol".
Operators may not have multiple result values (except by explicitly declaring a class having the required
members) and must be class members. Polymorphic operators may be declared.

The unary operator symbols that may be defined are:  #  +  -  <  >

The binary operator symbols that may be defined are:  ^  **  ++  --  #  +  -  *  /  %  <<  <<=  in  []  ..

The binary operator symbols that may be re-implemented (see section 7.1.5) but not redefined are:  =  &lt <= 
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6.6.1 Syntax of operator declarations

OperatorDeclaration:
 OperatorHeader [ExceptionSpecification] [RequirePart] *[OperatorProperty] [pre

PredicateList] [decrease RecursionVariant] OperatorBody [PostAssertion].

OperatorHeader:
        [opaque | ghost] operator UnaryRedefinableOp ":" TypeExpression;
        [opaque | ghost] operator BinaryRedefinableOp OperatorParameter ":"
TypeExpression;
        [opaque | ghost] operator OperatorParameter RevRedefinableOp ":" TypeExpression.

OperatorBody:
        "^=" Expression [Implementation];

 satisfy PredicateList [Implementation].

OperatorParameter:
 "(" Identifier ":" ParameterType ")".

UnaryRedefinableOp:
        "<"; ">";
        " +"; "-"; "*"; "/"; "%"; "#"
        "^".

BinaryRedefinableOp:
        "[" "]";

 RevRedefinableOp.

RevRedefinableOp:
        "<"; "<="; "<< "; "<<=";
        ">";
        "in";
        " +"; "-"; "++"; "--";
        "*"; "/"; "**"; "%"; "%%"; "#" "##";
        ".."; "^".

OperatorProperty:
 associative;
 commutative;
 idempotent;
 identity Expression.

All operators must be declared as members, and there must be the correct number of parameters (zero or one)
for the operator symbol being defined (i.e. one less than the arity of the operator). If a parameter is declared, it
may be declared either before the operator keyword (in which case the current object will take the place of the
right operand), or after the operator symbol (in which case the current object will take the place of the left
operand).
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6.6.2 Comparison operator declarations

When declaring comparison operators, additional properties normally associated with the operator symbol
being used must be satisfied, as follows:

The result type must be bool.• 
Operators which are already defined for the types concerned may not be declared. Note that since the
equality operator is defined for all types, it may not be redefined (although it may be declared as
ghost or non-ghost and its implementation may be redefined within a class).

• 

Operators consisting of "~" followed by another operator symbol may not be declared (they are
generated automatically from the corresponding operator symbol).

• 

The binary operators ">" and ">=" may not be declared; they are automatically generated from the
operators "<" and "<=" respectively by reversing the operands. Similarly, ">>" and ">>=" are
automatically generated from "<<" and "<<=".

• 

The binary operators "<" and "<=" may not be declared, though may be reimplemented. They are
generated automatically from "~~" ("<=" is only generated when "~~" is declared as defining a total
ordering on the type).

• 

When declaring the comparison operator "~~", a special form of operator declaration is used where the
parameter type and return type are not specified (they are automatically the type of the current class and rank
respectively), there may not be any preconditions, and the specification must satisfy the properties for "~~"
detailed in section 7.1.7.

6.6.3 Declaring operator properties

Where a binary operator is declared with no precondition, the operator may be declared any or all of
associative, commutative and idempotent; in addition, a left identity expression can be declared (i.e. an
expression E such that E op X = X for all expressions X). Verification conditions will be generated to verify
that the stated properties hold.

6.7 Selector declarations

Selectors may only be declared as members of abstract classes (see Chapter 7) but selector declarations will
be described here due to their similarity with function and operator declarations. 

A selector declaration has similar syntax to a function declaration, except that the function keyword is
replaced by selector, the selector name may either be an identifier or the "[]" symbol, the result type may not
be a declaration list, and the result must be defined by "^=" and a writable or limited writable expression. The
grammar is:

6.7.1 Syntax of selector declarations

SelectorDeclaration:
 SelectorHeader [ExceptionSpecification] [RequirePart] [pre PredicateList] [decrease

RecursionVariant] "^=" Expression [Implementation] [PostAssertion].
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SelectorHeader:
        [opaque | ghost] selector SelectorName ["(" FunctionParameterList ")"] ":" [limited]
TypeExpression.

SelectorName:
 Identifier;

        "[" "]".

The purpose of a selector is to identify a sub-part of the current object. Unlike a function, the result of a
selector can be modified.

If the selector result type is declared limited, the access provided does not allow clients to reassign the result
(but does allow member schemas and further selectors to be invoked on the result) and the result expression
that follows "^=" must be writable or limited writable.

If the selector is not declared limited, clients may use the selector to re-assign the returned sub-object (and in
doing so, to change its actual type, if its declared type is a union). The result expression that follows "^="
must be writable.

A classic example of a selector is the indexing operator "[]" on sequences.

6.8 Schema declarations

A schema is a description of a change of state (with optional implementation detail). Schemas correspond to
procedures in conventional programming languages. Every schema has a defined postcondition; schemas may
also have parameters, preconditions, variants and implementations. The syntax is:

6.8.1 Syntax of schema declarations

SchemaDeclaration:
 SchemaHeader [ExceptionSpecification] [RequirePart] [pre PredicateList] [decrease

RecursionVariant] post Postcondition [Implementation] [PostAssertion].

SchemaHeader:
        [opaque | ghost] schema ["!"] Identifier ["(" SchemaParameterList ")"].

SchemaParameterList:
 SchemaParameters [Separator repeated SchemaParameters];
 repeated SchemaParameters.

SchemaParameters:
 SchemaParams *[Separator SchemaParams].

SchemaParams:
 SchemaParamIdentifier *[Separator SchemaParamIdentifier]

            ":" [limited | out] ParameterType.
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SchemaParamIdentifier:
 Identifier;
 Identifier "!".

The "!" symbol before the schema name may only appear in class member schemas; it indicates that the
schema modifies the current object. The parameter list is similar to a function parameter list except that the
names of the parameters may each be followed by an exclamation mark, and the parameter types may be
preceded by the keywords limited and out. An exclamation mark indicates that the actual parameter may be
modified by the schema. Parameters declared after repeated may not be decorated.

The optional keywords limited and out before the parameter type may only be used when all the parameters
to which they apply are decorated with "!". The keyword out indicates that the parameter's initial value is of
no interest to the schema. The keyword limited indicates that the parameter is to be limited writable (instead
of fully writable), i.e. the schema is not permitted to reassign the parameter (and may therefore not change its
actual type, if it is a union).

Polymorphic parameters are permitted in the same way as for functions and lead to the same implicit
additional precondition.

The precondition and variant parts are exactly as already described for functions.

The postcondition (post part) describes one or more conditions that must be satisfied after execution of the
schema. As with the precondition, a list of postconditions may be given; all must be satisfied. Postconditions
are described in more detail in the following section.

Within the schema declaration, parameters which were listed in the parameter list without the keyword out
may be referred to unprimed (but need not be referred to at all). Parameters which were listed with an
exclamation mark may appear primed within the postcondition list. Parameters which were declared as out
must be assigned by the postcondition.

A schema which is not a class member may only modify parameters which appear followed by "!". A schema
which is a class member may be declared with the "!" symbol before the schema name, in which case it may
modify members of the current object as well.

A schema post-assertion specifies additional conditions that are expected to hold when the schema completes.
These conditions should be provable from the postcondition. Each expression in the post-assertion must refer
to at least one primed entity (i.e. a primed instance of a modified parameter, or a primed member variable or
primed self if it is a member schema that modifies the current object). As with function post-assertions, a
schema post-assertion may start with "... ," to indicate that this post-assertion adds to rather then overrrides the
post-assertion of the overridden inherited schema.

[SC] If the opaque keyword is used, the schema is nondeterministic (i.e. the postcondition does not uniquely
determine the final state, in consequence multiple calls with the same parameters may give rise to different
states); otherwise it is deterministic.

[SC] The nonmember keyword indicates that the schema is not a member of the class and does not have the
"current object" parameter. It is only valid within in a class declaration.
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[SC] A variant is specified if the postcondition refers to the schema under definition, i.e. if the schema
specification is recursive.

[PO: the precondition can always be evaluated (i.e. its precondition is true); the postcondition can be
evaluated whenever the precondition is true; if the postcondition is directly or indirectly recursive, the variant
decreases on each recursion; the variant can never be negative.]

6.8.2 Postconditions

The full grammar for postconditions is as follows:

Postcondition:
 change ExpressionList satisfy PredicateList;
 PostconditionList;

        "?".

PostconditionList:
 PostconditionElement *["," PostconditionElement].

PostconditionElement:
 forall BoundVariableDeclarations ":-" PostconditionElement;
 Postcondition0.

Postcondition0:
 Postcondition0 then Postcondition1;
 Postcondition1.

Postcondition1:
 Postcondition1 "&" Postcondition2;
 Postcondition2.

Postcondition2:
 PrimableExpr8 "!" "=" Expression;
 PrimableExpr8 "!" AssignableOp Expression;

        "(" *[LetDeclarationVariableDeclarationsAssertionOrTrace] PostconditionOrChoices
")";

 SchemaCall;
 pass.

AssignableOp:
 BooleanImplicationOperator;

        "&"; "|";
 AddingOperator;
 MultiplyingOperator;

        "^"; "..".

LetDeclarationVariableDeclarationsAssertionOtTrace:
 LetDeclarationAssertionOrTrace;
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 VariableDeclarations ";".

PostconditionOrChoices:
 PostconditionList;
 Guard Postcondition *["," Guard Postcondition] ["," LastChoice];
 opaque Guard Postcondition "," Guard Postcondition *["," Guard Postcondition].

LastChoice:
 EmptyGuard Postcondition;

        "[" "]".

SchemaCall:
        [PrimableExpr8] "!" IdentifierOrSuper [SchemaActualParameterList];

 PrimableExpr8 "." IdentifierOrSuper SchemaActualParameterList;
 IdentifierOrSuper SchemaActualParameterList.

SchemaActualParameterList:
        "(" SchemaActualParameter *[Separator SchemaActualParameter] ")".

SchemaActualParameter:
 PrimableExpr8 "!";
 Expression.

6.8.2.1 The "change...satisfy" form

In this form of postcondition, a list of expressions to be changed and a list of predicates to be satisfied is
given. Each expression in the list must be a primable expression (but should not be primed in the list). The
code generator will attempt to modify the specified variables to achieve the desired conditions.

Although this is the most general form of postcondition, it has two disadvantages; it is verbose (because
subexpressions whose values change may have to be written twice - once in the expression list and once in the
predicate) - and the code generator may not be able satisfy the predicate, in which case an implementation will
have to be provided.

6.8.2.2 The "then" form

This form allows two postconditions to be joined in a strictly sequential manner. In each of the two
component postconditions, a primed subexpression refers to the final value after execution of that
postcondition (which, for the first postcondition, is not necessarily the final value after execution of the
complete compound postcondition), and an unprimed subexpression refers to the value before execution of
that postcondition (which, for the second postcondition, is not necessarily the same as the value before
execution of the complete compound postcondition).

A then-postcondition may not appear in a postcondition list containing more than one postcondition, nor may
it be combined with another postcondition using "&".
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6.8.2.3 The "&" form

This form allows two postconditions to be joined in a parallel manner. This form is only valid if the sets of
subexpressions modified in each of the component postconditions do not overlap. So if the component
postconditions can be represented by "change exprlist1 satisfy cond1" and "change exprlist2 satisfy cond1"
respectively, the combination is equivalent to "change exprlist1, exprlist2 satisfy cond1 & cond2".

The individual postconditions conjoined by "&" may not be or contain the then-form of postcondition.

6.8.2.4 The assignment form

The "x! = y" form of postcondition assigns the value of y to x. It is equivalent to the postcondition "change x
satisfy x' = y".

The form "x! AssignableOp y" is shorthand for "x! = x AssignableOp y". The operator must be a binary
operator accepting parameters of the types of x and y and returning a value of the type of x (exactly as if the
full version had been used). Using this form also serves as a hint to the code generator that if possible the
condition should be satisfied without copying x.

6.8.2.5 The bracketed form

The bracketed form parallels the syntax and semantics of bracketed expressions: let declarations can be used
to define temporary values (whose names are in scope until the closing bracket), assertions may be introduced,
and in schema postconditions (but not in postconditions attached to constructors or after expressions) new
temporary variables may be declared. Finally, either a single postcondition, a comma-separated list of
postconditions, or a guarded list of postconditions may be provided.

If a guarded list is provided, at least one guard must be satisfied (unless an empty guard is provided); the
guards are evaluated in the given order, and the postconditions of the first guard found to be true will be
selected for execution, defaulting to the postcondition with the empty guard if no guard is satisfied. If the
empty guard is of the form with no postcondition then no action is taken if no guard is satisfied. There is no
restriction on the relationships between the sets of subexpressions modified by the postconditions.

If the guarded list is preceded by opaque, then the semantics is that of nondeterministic choice between those
postconditions whose guards are true. No empty guard is permitted in this case.

6.8.2.6 Schema calls

The form "SchemaCall" indicates that the designated schema should be invoked with the parameters supplied.

The name of the schema to be invoked is followed by a parameter list in brackets (see the grammar for
Expression). Each actual parameter in the brackets must be followed an exclamation mark if the
corresponding formal parameter was in the declaration (this makes it possible to tell at the point of schema
invocation which parameters are modified, but it is not possible to tell without reference to the original
declaration if a modified parameter is read or not). When invoking a schema which has no parameters, the
brackets which would have enclosed the actual parameters are omitted.
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When invoking a schema which is a class member, the schema member name must follow an expression
yielding an object of the class concerned and be separated from that expression by an exclamation mark if the
schema modifies the object, or a period otherwise (therefore it is possible to tell at the point of schema
invocation whether the current object is modified). If exclamation mark is used to separate the expression
from the member name, the expression must be writable or limited writable.

Within the declaration of the class concerned, a member schema name may appear without a preceding
expression, in which case the current object is understood, but if the schema modifies the object, a leading
exclamation mark is required and the current object must be writable or limited writable.

In the case of a formal parameter which is decorated by "!", the corresponding actual parameter must be
writable (limited writable will suffice if the formal parameter's type is declared limited).

Where the current class declares a schema that overrides an inherited schema, the overridden schema can be
accessed by prefixing its name with the keyword super. If the circumstances require the schema name to be
preceded by an exclamation mark or a period, then the exclamation mark or period must be placed just before
the super keyword.

For the purposes of applying the rules concerning the combining of postconditions using "&", a schema call is
assumed to modify all parts of any subexpressions that appear followed by "!" in its parameter list; and if the
schema name is preceded by "!", the entire expression preceding "!" if there is one, otherwise the entire
current object. This means that schema calls that modify an object can only be combined with other
postconditions that modify the same object using "then".

[PO: The schema precondition is satisfied.]

6.8.2.7 Functions called as if they are modifying schemas

Where a member function of a class has a return type that is the same as the type of self for that function, it is
permitted to call that function as if it were a schema that modifies the self-operand. If foo(...) is such a
function, then the call v!foo(parameters) is equivalent to v! = v.foo(parameters).

The internal-section of the class may also declare a reimplementation of the schema version of foo, in which
case the reimplementation will be used when foo is called like a schema. The implementation may or may not
call the reimplementation-as-schema (instead of the original function) when the form v! = v.foo(...) is used.

6.8.2.8 The "forall" form

The form "forall BoundVariableDeclaration :- Postcondition" instantiates and satisfies Postcondition for
every value of the bound variable in the bound. The instantiations are considered to be executed in parallel.
The subexpressions changed by each instantiation must be distinct.

[PO: For any value of the bound variable in the bound, the postcondition is well defined. For distinct values of
the bound variable the postconditions produced are independent. If the bound is a sequence or bag, the
elements are distinct.]

[TBD: The uniqueness condition above is not necessary - a weaker sufficient condition is that for any element
appearing more than once in the collection, the postcondition does nothing. However, in this case the
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postcondition can be rewritten as 'forall x::those y:: ...', so we use the simpler, stronger condition. A
shorthand for writing this form of postcondition may be added at a later date.]

6.8.2.9 The "pass" form

The postcondition pass can be trivially satisfied by doing nothing.

6.8.2.10 The "?" form

This form indicates that the postcondition has deliberately not been specified yet. Typically, it may be used in
skeletal source files that do not yet need to be compiled but need to be included in other Perfect source files.

[TBD: whether to insist that postconditions are deterministic unless they are specifically written in a
nondeterministic manner using the any keyword.]

6.9 Property declarations

Properties come in two forms: with and without postconditions. A property without a postcondition is
essentially an assertion with optional parameters and, in the case of a member property, an implied current
object. A property with a postcondition describes conditions that are expected to hold after the postcondition
is satisfied. Typically, the postcondition will comprise one or more schema calls.

Properties serve to verify that the system will satisfy its requirements, and to give hints to the verifier for
proving verification conditions (including other properties).

6.9.1 Syntax of property declarations

Properties are declared using the syntax:

PropertyDeclaration:
        [nonmember] property [Identifier] ["(" FunctionParameterList ")"] [pre PredicateList]
Assertion;
        [nonmember | "!"] property [Identifier] ["(" SchemaParameterList ")"] [pre
PredicateList] post Postcondition PostAssertion.

A property declaration without a postcondition is like a ghost function with no result, such that if it is called in
a state satisfying the precondition and all applicable class invariants, all the expressions in the assertion should
yield true. Mathematically, a property declaration can be turned into a traditional theorem by universally
quantifying over each parameter (together with self, if it is a member property), and putting an implication
operator between the precondition and the assertion.

A property declaration with a postcondition is like a ghost schema, although it cannot be called (even though
it may be given a name), and it is not required to honour history invariants. Just as in the case of a real schema
with a postassertion, if it is called in a state satisfying the precondition, then the postassertion should be true.
If a member property declaration is prefixed with "!" then the postconditon may modify the current object;
otherwise it may not.
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The proof list is a hint to the theorem prover, needed if the property is valid but the prover is unable to prove it
unaided.

Polymorphic properties are permitted. Property declarations may be overloaded in the same way as function
declarations.

Member properties are inherited by derived classes, however they may not be deferred or redefined.

[SC] The nonmember keyword indicates that the property is not a member of the class and does not have the
"current object" parameter. It is only valid within in a class declaration.

[SC] Neither the precondition nor the assertion list may directly or indirectly refer to the property.]

[PO: the precondition can always be evaluated; the assertion is satisfied whenever the precondition is satisfied
and all the parameters and self (if applicable) satisfy the class invariants for their types.]

6.10 Axiom declaration

An axiom is similar to a property except that it asserts a truth which it is not possible for the theorem prover to
prove but which is nevertheless to be assumed true. An axiom declaration has the syntax:

AxiomDeclaration:
        [nonmember] axiom [Identifier] ["(" FunctionParameterList ")"] [pre PredicateList]
assert PredicateList.

[SC] The nonmember keyword indicates that the axiom is not a member of the class and does not have the
"current object" parameter. It is only valid within in a class declaration.

[PO: The precondition can always be evaluated; the predicate list which follows assert can be evaluated
whenever the precondition is satisfied.]

6.11 Type compatibility of parameters and results

This section makes use of the relations "same" and "nested" defined in section 4.15. Type constraints take no
part in determining type compatibility but do give rise to additional proof obligations. The exception to this is
where a constrained type is used to instantiate a templated type, in which case the constraints must be
identical for the types to match.

6.11.1 Type compatibility of undecorated parameters

An expression used as an actual parameter is type-compatible with a corresponding undecorated formal
parameter if the expression type is nested within the formal parameter type.

6.11.2 Type compatibility of parameters decorated with "!"

An expression used as an actual parameter is type-compatible with a corresponding formal parameter
decorated with "!" if the expression type is the same as the formal parameter type, or the expression type is
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nested within the formal parameter type and the formal parameter type is declared limited..

6.11.3 Type compatibility of repeated parameter groups

Where the formal parameter list includes the keyword repeated then the formal parameters that follow may
be matched by one or more comma-separated groups of actual parameters, each of which must match all of
those formal parameters and the intervening separators. For example, the formal parameter list:

(a: bool, repeated b: int -> string)

could be matched by either of:

(true, 1 -> "one")
(false, 1 -> "one", 2 -> "two")

but not by either of:

(true)
(false, 1 -> "one", 2)

(the first violates the requirement to match the repeated group at least once, the second violates the
requirement to match the entire repeated group a whole number of times).

6.11.4 Type compatibility of result values

A result expression in a function or operator declaration, or in a selector declaration with a return type
declared limited, is type-compatible with the declared result type if the expression type is nested within the
declared result type.

A result expression in a selector declaration with a return type not declared limited is type-compatible with
the declared result type if the expression type is the same as the declared result type.

6.12 Function, Operator, Selector and Schema Overloading

Overloading the same name or operator symbol is permissible provided it is not possible to construct a call
that could match more than one declaration, regardless of whether such a call actually occurs in the program.
"Could" means that we assume all undefined type relations are actually true (see section 4.15.2 for the
definition of when type relations are undefined). For example, functions identical except for operands of types
"seq of nat" and "seq of int" would not be permitted, since an operand of either type has an undefined match
with the other.

Matching a call to a declaration considers only the number of parameters, the separators and the type
compatibility rules; no account is taken of the decoration and writability of actual parameters or any
constraints in the types of formal parameter.
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6.13 Modules

A Perfect module comprises an import list followed by a sequence of declarations:

Module:
        *[ImportList] DeclarationList [";"].

ImportList:
 import NonEmptyStringLiteral *["," NonEmptyStringLiteral] ";".

DeclarationList:
 Declaration *[";" Declaration].

The import list identifies other Perfect modules containing declarations referred to in the current module.
Each NonEmptyStringLiteral names a file containing such a module.

[TBD: define precise rules for the search path for imported modules],

The declaration list for a module cannot include variable declarations (i.e. there are no global variables). The
purpose of this restriction is to ensure that functions cannot depend on anything other than their parameters
and the current object, and that schemas cannot modify anything not flagged as modifiable in their signatures.

Perfect Language Reference Manual, Version 7.0, February 2017.
© 2017 Escher Technologies Limited. All rights reserved.
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7. Abstract Classes

7.1 Abstract class declaration

7.1.1 Syntax

ClassDeclaration
       [deferred | final ] class Identifier [ of FormalTemplateParameters] [RequirePart] "^="
[inherits TypeExpr5 | storable] ClassBody end.

ClassBody:
AbstractPart [ InternalPart] [ ConfinedPart] [ InterfacePart];
ConfinedPart [ InterfacePart];
InterfacePart.

AbstractPart:
abstract [ AbstractMember *[ ";" AbstractMember] [";"] ].

InternalPart:
internal [ InternalMember *[ ";" InternalMember] [";"] ].

ConfinedPart:
confined [ ConfinedMember *[ ";" ConfinedMember] [";"] ].

InterfacePart:
interface [ InterfaceMember *[ ";" InterfaceMember] [";"] ].

AbstractMember:
MemberDeclaration;
ClassInvariant;
HistoryInvariant.

InternalMember:
MemberDeclaration;
InternalRedeclaration ;
InternalReimplementation;
ClassInvariant.

ConfinedMember:
       [define | redefine] MemberFunctionEtcDeclaration ;

DeferredDeclaration;
AbsurdDeclaration;
ConfinedOrInterfaceRedeclaration.

InterfaceMember:
ConfinedMember;

       [ghost] operator "=" "(" Identifier ")";
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       [total] operator "~~" "(" Identifier ")" [decrease RecursionVariant] OperatorBody.

MemberDeclaration:
ConstantDeclaration;
ConstructorDeclaration ;
VariableDeclarations ;
HeapDeclaration ;
MemberFunctionEtcDeclaration;
PropertyDeclaration;
AxiomDeclaration;
ClassDeclaration;
TypeDeclaration.

ClassInvariant:
invariant PredicateList.

HistoryInvariant:
       "!" invariant PredicateList [ exempt IdentifierList ].

InternalRedeclaration:
function Identifier "^=" Expression .

InternalReimplementation:
function Identifier [ "(" FunctionParameterList ")" ] Implementation;
operator RedefinableOp [OperatorParameter] Implementation;
operator OperatorParameter RevRedefinableOp Implementation;
operator "=" "(" Identifier ")" Implementation;
selector SelectorName [ "(" FunctionParameterList ")" ] Implementation;
schema ["!"] Identifier [ "(" SchemaParameterList ")" ] Implementation;
schema "!" RedefinableOp OperatorParameter Implementation ;
build "{" [ConstructorParameterList] "}" Implementation.

ConfinedOrInterfaceRedeclaration:
function IdentifierList;
selector IdentifierList.

MemberFunctionEtcDeclaration:
       [final | early] FunctionEtcDeclaration;

nonmember FunctionDeclaration;
nonmember SchemaDeclaration.

FunctionEtcDeclaration:
FunctionDeclaration;
SelectorDeclaration ;
OperatorDeclaration ;
SchemaDeclaration .
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DeferredDeclaration:
deferred FunctionEtcHeader [pre PredicateList] [decrease Variant] [Assertion].

AbsurdDeclaration:
absurd FunctionEtcHeader.

FunctionEtcHeader:
FunctionHeader;
SelectorHeader;
OperatorHeader;
SchemaHeader.

7.1.2 Class specification

The class specification comprises the optional inherit list, abstract, confined and interface member
declarations. The internal declarations are implementation detail.

Whenever a function, operator, schema, property or axiom class member is declared, there is an implied
"current object" parameter. The definition of the member may refer to unqualified members of the current
object, and may also refer to the entire current object using the self keyword. However, if the nonmember
modifier is used, the definition is not declaring a member and there is no "current object". Properties and
axioms involving more than one value of the class type should normally be declared as nonmembers for
clarity.

7.1.3 Inherits part

The optional inherits part specifies a class or class template instantiation whose attributes are to be inherited.
It is forbidden to inherit from a final class or instantiation of a final class template.

7.1.4 Abstract members

The abstract member declarations and invariants describe the model of the class as seen by its clients. The list
of declarations is prefixed by the keyword abstract. The list may include constant, variable, function,
selector, operator, schema, property, axiom, constructor and class declarations (function and schema
declarations are not common in this context and are only used as an aid to expressing the interface
specification). Implementations are not permitted within abstract function, selector, operator, schema and
constructor declarations. Member variables may be made conditional using the when...end construct.

Any invariants in the abstract section specify relationships between abstract members which must be true for
any object of the class; it is an implicit part of the postcondition for all constructor and schema members in all
sections of the class following the invariant.

7.1.5 Internal members

The optional internal member declarations describe how the class is implemented. The internal member
declarations may include constant, variable, function, selector, operator, schema, property, axiom and class
declarations.
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Internal members serve the following purposes:

To allow additional redundant data to be stored (e.g. to save having to recalculate a function of the
abstract data each time it is needed)

• 

To allow the abstract data to be represented in a more efficient but more complex manner• 
To allow additional functions, schemas etc. to be declared for use in the implementations of confined
and interface members

• 

To allow some functions and operators to be reimplemented as schemas, for greater efficiency when
they are called in a schema-like way

• 

[SC] Within the internal section, abstract variable members of the class may be redeclared as function internal
members. In such redeclarations, the usual ": TypeExpression" is omitted since the type has already been
specified; no parameters are permitted in the declaration. Redeclaration as a function indicates that the
abstract member may be computed from internal variable members according to the function body. The
implied precondition of such a function comprises the following elements:

All invariants inherited from the parent class• 
All invariants in the abstract section• 
Those invariants in the internal section preceding the redeclaration• 
If the original abstract variable declaration was inside a when clause, the corresponding guard• 

Abstract member redeclarations may not be recursive (i.e. internal members referred to in an abstract member
redeclaration may not be described directly or indirectly in terms of that abstract member).

Abstract members which are functions, operators, selectors, schemas or constructors may be reimplemented.
In such a reimplementation, no result type, precondition, postcondition, result value or specification variant is
given; however, a parameter list is given if required (the parameter names must match the ones in the original
declaration).

In a final class, interface and confined functions and operators whose return type is the type of the class may
be reimplemented as schemas. The implied specification for the schema is that self has changed to be equal to
the result value of the function or operator. These reimplementations may be used for more efficient
implementation of postconditions which require this state change.

Any abstract variables which are not redeclared as internal functions are represented directly. If the internal
section is absent all abstract variables will be represented directly.

Any invariants in the internal section describe restrictions on the values of the internal members.

[SC: each Identifier within an InternalRedeclaration is the name of an abstract variable member.]

7.1.6 Confined and Interface members

The confined and interface declarations comprise the published interface to the class. A confined or interface
declaration may be a function, selector, operator, schema, property, axiom or constructor declaration, or a
redeclaration of an abstract variable or constant member.
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Confined members are only accessible to derived classes; interface members are available to the public at
large.

The specifications of confined and interface members may only refer to abstract members and to other
interface and confined members (including inherited confined and interface members). The implementations
of confined and interface members may refer to internal members as well.

Redeclaring the name of an abstract variable or constant member as an interface function member makes the
member accessible but "read-only" to clients of the class. Such a redeclaration consists of the keyword
function and the abstract member name; no type is specified (since the type was given in the abstract member
list), no parameters are declared and no body is given (if the abstract member was redeclared as an internal
function member, then the body has already been given, otherwise the abstract member is being implemented
as a variable member and a body is constructed which just returns its value). If the abstract variable is
declared in a when clause, the corresponding guard becomes the implied precondition of the interface
function.

Redeclaring the name of an abstract variable member as an interface selector member makes the member
completely accessible to clients of the class. Such a redeclaration consists of the keyword selector and the
abstract member name; again, no type is specified and there are no parameters or body. The abstract data
member concerned may not have been redeclared in the internal section as a function, nor may any class
invariant in the current class or any derived class directly or indirectly depend on it. If the abstract variable is
declared in a when clause, the corresponding guard becomes the implied precondition of the interface
selector.

Redeclaring the name of an abstract variable as a confined function or selector has a similar effect except that
accessibility is limited to members of the current class and derived classes.

A class declared in the abstract member declaration section may not be used as the type of a parameter or the
result of a confined interface member (because the class declaration is not visible to clients of the class).

7.1.7 Rank and equality declarations

The interface section may also include declarations for the rank and equality operators. In a declaration of
rank or equality, neither the parameter type or return type are stated (these are always implicitly defined as the
type of the class and rank or bool respectively).

Equality is always implicitly defined as equality of the abstract data members; so no result value may be
declared in an equality operator declaration. The explicit declaration of an equality operator serves to specify
whether equality can actually be evaluated at run-time (i.e. whether equality is ghost).

If equality is declared as a non-ghost operator in some class C, then equality in C and all its descendents is not
ghost. Similarly, if equality is declared ghost in class C, then equality in C and all its descendents is ghost.

If a class C contains no equality operator declaration and neither do any of the ancestors of C, then C has
non-ghost equality by default. However, decendents of C are still permitted to declare ghost equality.
Therefore, equality on objects of type from C is treated as ghost to allow for this possibility. If you require
the type from C to have non-ghost equality, then you must declare a non-ghost equality operator explicitly in
C or in one of its ancestors.
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A rank (i.e. comparison) operator may be declared and defined in any way that, for all values x, y, z of the
class in which the rank operator is being defined, satisfies the following properties:

x = y ==> x ~~ y = rank same• 
x ~~ y = rank same <==> y ~~ x = rank same• 
x ~~ y = rank below <==> y ~~ x = rank above• 
x ~~ y = rank same ==> z ~~ x = z ~~ y• 
x ~~ y = rank below & y ~~ z = rank below ==> x ~~ z = rank below• 

If the operator is declared total it must also satisfy:

x ~~ y = rank same ==> x = y• 

If a rank operator has already been declared in one of the class's parents then it is also required that the new
rank operator does not change any of the existing ordering, it merely refines it. If we use ~~c to represent the
rank operator in the child class and ~~p to represent the rank operator in the parent class, then the condition to
be satisfied is:

(x ~~c y = x ~~p y ) | (x ~~p y = rank same)• 

Note that the system is at liberty to further refine any user definition of rank that is not already total. In
particular, where the user-defined rank would cause objects of different classes to rank same, the system will
refine the definition so that this is not the case.

In the absence of an explicit declaration of the rank operator in a class, the system will generate one. The
definition may be trivial (e.g. all instances of the class rank same with each other), or more complex; but it is
guaranteed to respect any inherited rank operator.

7.1.8 Nonmember declarations

A function, schema or property declaration within the abstract, internal, confined or interface section of a
class declarations may be declared nonmember to indicate that the declaration is not a member of the class
and does not have the "current object" parameter. Nonmember declarations are not considered to be class
members even though they are declared within the body of a class. The nonmember keyword may be not be
applied to an operator or selector declaration, neither may it be applied to a method that is declared within an
implementation or is declared at file scope.

For each confined or interface nonmember function or schema declared, either the result type (if a function
member) or at least one parameter should be of the class type, or a union involving the class type, or a
template instantiation involving the class type in its parameters; otherwise the declaration does not belong
inside the class definition.

An interface nonmember function or schema may be called from outside the class by following its name with
the "@" symbol and the class name, then the parameter list, if any, as in
myNonmemberMethod@MyClass(aParameter).

An abstract constant may be redeclared as a nonmember confined or interface function using the same syntax
as for the redeclaration of an abstract variable, save that the nonmember keyword must be used.
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7.1.9 Recursive class declarations

It is permissible for a class declaration to be recursive, i.e. it may have data members (abstract and/or internal)
which involve its own type, provided such recursion is finite. In practice this means that in a declaration of
class X it is permissible to declare members of types X || Y (where Y does not refer to X), seq of X, set of X
and bag of X (provided an empty collection is permitted), and other types which have conditional members of
type X (provided the condition is not always true).

7.1.10 Class invariants

A class invariant is a predicate (i.e. a Boolean expression) declared in the abstract or internal section of a
class, whose purpose is to constrain the values of the member variables to combinations for which the
invariant yields true. To this end, a class invariant is:

An implicit precondition of every member method whose declaration it logically precedes;• 
An implicit post-assertion of every constructor and member schema whose declaration it logically
precedes.

• 

An invariant logically precedes a declaration D if and only if D is declared later in the text than the invariant
but within the same abstract or internal section, or D is declared within the confined or interface section of
the same class.

A class invariant may not refer to any declaration that it logically precedes; neither may an invariant declared
in the abstract section refer to a declaration in the internal section.

A class invariant may not depend on any variable whose value can be accessed (in whole or in part) by means
of a call to an interface selector and thereby altered such that the invariant is violated. This restriction ensures
that any modification of an object other than self by means of selector access is bound to preserve the
invariant.

The only explicit or implicit references to self permitted in a class invariant are references of the form "self.x"
where x is the name of a member variable, or one of "self .f (...)", "self op ..." or "... op self" where f or op is
the name of a member function or operator whose declaration logically precedes the class invariant or which
is inherited from an ancestor class in which it is declared early. This ensures that an invariant cannot be
defined in terms of members that assume the invariant is satisfied.

In the abstract section, constructors can only be declared after all invariants in that section. Similarly, if an
abstract constructor is re-implemented in the internal section, then that re-implementation must be after any
and all invariants have been declared in the internal section.

Multiple comma-separate invariants may be declared following the invariant keyword.

A method or constructor need not respect any invariant that does not logically precede its own declaration. A
method or constructor postcondition or body may temporarily break a class invariant that does logically
precede the method or constructor declaration, provided that the invariant is satisfied both on completion of
the postcondition or body and at the point of every call to a method whose declaration the invariant logically
precedes.
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7.1.11 History invariants

Whereas a class invariant places a constraint on the values that the abstract variables of a class may take, a
history invariant places constraints on the ways in which the abstract variables may be changed. Declaring a
history invariant in a class is equivalent to declaring a corresponding postassertion on every member schema
that modifies the current object and is declared textually later than the history invariant.

A history invariant is distinguished from a class invariant by the initial "!" symbol before the keyword
invariant. Each expression in a history invariant must refer to at least one instance of self ' or to a primed
abstract member variable. Unliike class invariants, history invariants may only appear in the abstract of a
class and not in the internal section.

The optional exempt clause lists the names of schemas that are exempted from having to comply with the
history invariant. This provides a means to specify that some sorts of changes (i.e. those that do not satisfy a
history invariant) may only be made by certain named schemas.

When class inheritance is used, any history invariants declared in a parent class apply not only to schemas
declared textually later in the parent class, but also to all modifying schemas declared in any descencent class,
apart from schemas whos names appear in the exemption list.

7.1.12 Storable classes

A class or class template declaration is termed storable if it has no inherits part but includes the keyword
storable after the "^=" symbol, or if it inherits a storable class. If the declaration for class X is storable, all
objects of types X, from X, ref X and ref from X are storable, meaning they may be written to and read from
external storage or communication channels.

Within the declaration of a storable class, all variable members of the class (other than abstract variables
redeclared as internal functions) must have storable types.

Objects of type X of (A, B...), from X of (A, B ...) and ref X of (A, B...) are storable if and only if the
declaration of class template X of (Y, Z ...) is storable and objects of types A, B... are all storable. A united type
is storable if and only if all the types in the union are storable. Adding a constraint to a type does not affect its
storability.

Predefined types bool, byte, char, int, real and void, and template types seq, set, bag, pair, triple and map
are storable, as are all enumeration and tag types.

7.2 Constructors

Constructor declarations provide the means to build values of the class. The syntax is:

ConstructorDeclaration:
       [opaque | ghost ] build "{ " [ConstructorParameterList] "}" [ExceptionSpecification]
[RequirePart] [pre PredicateList] [decrease Variant] [ConstructorBody] [PostAssertion].

Perfect Developer Language Reference Manual Version 6.0

7.1.11 History invariants 65



ConstructorParameterList:
ConstructorParameters [repeated FunctionParameters];
repeated FunctionParameters.

ConstructorParameters:
ConstructorParams *[Separator ConstructorParams].

ConstructorParams:
       ["!"] Identifier *[Separator ["!"] Identifier] ":" TypeExpression;
       ["!"] Identifier ":" AbbrevTypeExpression.

ConstructorBody:
       "^=" Expression [Implementation];

inherits Expression;
       [inherits Expression] post Postcondition [Implementation ].

The first form of ConstructorBody is used to define the result of a constructor in terms of an expression
yielding a value belonging to the class (typically the expression invokes another constructor for the class). The
second form defines the result in terms of the value of the parent object (the expression following the inherits
keyword) and the values of the abstract variable members (which must be defined in the postcondition).

Where a formal parameter name is prefixed by the symbol "! ", the parameter name must match the name of
an abstract data member of the class and the body (if present) must have the " post Postcondition" form (not
the "^= Expression" form). The type of the parameter must be equal to, or a subtype of, the type of the
abstract data member. Postcondition is implicitly expanded to include the condition that the final value of the
abstract data member is equal to the value of the actual parameter. Thus, using the form "!name" in the
parameter list is a shorthand for using instead the form "name2" in the parameter list and appending ", name!
= name2" to the postcondition which follows post (where "name" is an abstract data member and "name2" is
not).

Where the constructor has an implementation, assignments are also added to the start of the implementation
for every "! " parameter corresponding to a data member which has not been re-implemented as an internal
function. Where the constructor itself appears in the internal section, the same rules apply, but the " !"
parameter name must match either an internal data member or an abstract data member which is not
re-implemented.

The optional post-assertion specifies additional properties of the returned object that are expected to hold.
These properties should be provable from the postcondition or result expression. Within the post-assertion of a
constructor declared using "^=" and a result expression, the predefined identifier result refers to the returned
object, and each expression in the post-assertion must refer to result. Within the post-assertion of a
constructor declared with a postcondition, the returned object is denoted by self ', and each expression in the
post-assertion must refer to self ' or to a primed member variable.

[SC] Every abstract class declaration containing member declarations must include at least one constructor
declaration that does not use the "^= Expression" form of body (otherwise it would be impossible to construct
objects of the class).
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[SC] A constructor for a derived class must have a body, using either the "^= Expression " syntax or including
an "inherits Expression" part.

[SC] A constructor that does not use the "^= Expression" syntax must define the values of all its data
members, except for members declared within a when clause if the corresponding guard is false (if the "^=
Expression " syntax is used, all the data members are bound to be defined anyway).

[SC] If the opaque keyword is used, the constructor does not uniquely define the object. Note that if the class
includes one or more reference members and the constructor creates new values on the heap for the reference
member(s) to address, the object cannot be uniquely defined so this is one instance where opaque must be
used.

7.3 Derived abstract classes

7.3.1 Inheriting another abstract class

When an abstract class declaration inherits from another abstract class then all the confined and interface
members of that class are inherited by the new class. The abstract and internal members are inherited at an
implementation level but are not directly accessible by the inheriting class. Additional abstract, internal,
confined and interface members may be declared.

It is not permitted to inherit from a class that was declared final, neither is the type from T permitted if T is a
class declared final.

7.3.2 Overriding inherited declarations

Provided certain restrictions are obeyed, confined and interface function, selector, operator and schema
members of the inherited class may be overridden by new declarations. The new declaration must be in the
same section (confined or interface) as the old, have the same parameter and result types as the old and must
be preceded by the keyword redefine to indicate that the overriding is deliberate. The specification of the
overriding declaration must conform to the specification of the overridden declaration as follows:

If a precondition is given in the overriding declaration, then the precondition of the overridden
declaration must imply this new precondition whenever the class invariants are satisfied. If no
precondition is given in the overriding declaration, the precondition of the overridden declaration is
assumed.

• 

If an assertion is given in the overriding declaration, then this new assertion must imply the assertion
of the overridden declaration whenever the class invariants are satisfied. If no assertion is given in the
overriding declaration, the assertion of the overridden declaration is assumed. An overriding assertion
may begin " ...", in which case the stated assertions are added to those of the overridden declaration.

• 

The validity of any inherited member properties must be preserved.• 

Declarations that were declared final or early may not be overridden. Overriding declarations may also be
declared final or early.
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7.3.3 Accessing overridden members

When a class overrides a non-deferred member, the corresponding member in the parent class can be accessed
by prefixing its name with the keyword super. It is not permissible to apply more than one super to a member
name. If the member being invoked is a schema that modifies the current object, the "!" symbol precedes
super.

7.3.4 Deferred abstract classes

It sometimes happens that we wish to have a client invoke some operation on a class without understanding
the effect of the operation on the class. Typically, the operation will correspond to some real-world action
which may vary greatly between objects of different classes derived from a base class. In this situation we
may use a base class which includes one or more named and typed but undefined members.

A deferred base class is declared in exactly the same way as a normal non-inheriting abstract class except that
the entire declaration is prefixed with deferred and one or more of its interface function, operator, selector or
schema member declarations may be a deferred declaration.

No variable, parameter or result may be declared as having a type which is a deferred class. A deferred class
name may only appear within an inherits part in an abstract class declaration or after the from keyword in a
type expression.

Whenever a class declaration inherits a deferred class without defining all of the deferred members, or has one
or more declarations of deferred members, it is itself deferred and its declaration must be preceded by
deferred.

Whenever a class member declaration overrides an inherited member declaration that was originally declared
deferred and has not already been overridden, the keyword define must be used in place of redefine .

The constructors for a deferred class may only be invoked by the inherits parts of the constructors for classes
derived from it.

Constructors for deferred classes may not call any member functions, operators, selectors or schemas on the
current object apart from such members that were declared early. Member functions, operators, selectors and
schemas that are declared early may not call any other member functions, operators, selectors or schemas
unless they too are declared early. The purpose of these rules and the early keyword is to prevent the
possibility of calling a deferred member.

Those abstract and internal functions, operators, selectors and schemas which precede one or more invariants
are automatically considered early, and in addition are not allowed to call members declared in the current
class with fewer following invariants. It is not permitted to apply the early keyword to their declarations.

7.4 Class templates

A class may be declared with one or more template parameters, representing unspecified types that will be
instantiated whenever an object of the class is created. By default the only methods available on objects of
template type are the rank operator and a ghost equality; the optional RequirePart specifies other methods that
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should also form part of the interface of any class with which we instantiate the template.

The full grammar for the require part is as follows:

RequirePart
 RequireItem *["," RequireItem].

RequireItem:
 Identifier within TypeExpression;
 Identifier has PrototypeList end.

PrototypeList:
 PrototypeItem *[";" PrototypeItem] [";"].

PrototypeItem:
 FunctionEtcHeader [ pre PredicateList] [ assert Assertion];
 build "{ " [ConstructorParameterList] "}" [pre PredicateList] [assert Assertion];
 operator "=" "("Identifier ") ";
 total operator "~~" "(" Identifier ") ".

The Identifier in each RequireItem must bind to one of the class's template parameters. The within item
specifies a common base class that all types used to instantiate that parameter must inherit from. The has item
specifies a list of methods together with preconditions and assertions for the verifier.

The requirements are statically checked whenever the template is instantiated.

Perfect Language Reference Manual, Version 7.0, February 2017.
© 2017 Escher Technologies Limited. All rights reserved.
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8. Implementations and Proof Lists

8.1 Overview

Implementations are used to tell the compiler what algorithm to use.

There are two types of implementation: value implementation and state implementation. A value
implementation specifies how a value is to be computed; a state implementation specifies how a predicate is
to be satisfied.

An implementation that directly follows "^=" and an expression is a value implementation, as are
implementations for functions specified with a satisfy condition. All other implementations are state
implementations.

8.2 Syntax of implementations

Implementations are built up from implementation items, separated by semicolons. A variant may be given at
the start if the implementation is recursive. The grammar is:

Implementation:
 via [decrease Variant ";"] ImplList [";"] end.

NvImplementation:
 via ImplList [";"] end.

ImplList:
 ImplItem *[";" ImplItem].

ImplItem:
 LocalDeclaration;
 LetStatement;
 PostCondition [NvImplementation];
 ConditionalStatement;
 ValueCompletor;
 StateCompletor;
 Assertion;
 TraceStatement;
 Label;
 Jump;
 BlockStatement;
 Loop;
 ThrowStatement;
 TryStatement.

The initial Variant is only needed if the implementation is recursive and either the specification was not
recursive (so no variant was given in the specification) or a the specification variant is insufficient for the
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implementation.

[SC] A discontinuous statement is defined as any statement which is a Jump, ValueCompletor,
StateCompletor, ThrowStatement, or a conditional statement each of whose branches ends in a discontinuous
statement, or a try-statement whose body and catch-part are both discontinuous. A discontinuous statement
may only appear as the last item in an implementation, the last item in a branch of a conditional statement, the
last item in a block statement, the last item in a try-block or catch-block, or immediately before a label
(because the following statements would otherwise be unreachable).

[SC] The last ImplItem in an implementation of a function, operator or selector must be a discontinuous
statement.

8.2.1 Declarations

LocalDeclaration:
 LocalVarDecls;
 FunctionDeclaration;
 SchemaDeclaration;
 PropertyDeclaration;
 AxiomDeclaration;
 ClassDeclaration;
 TypeDeclaration;
 HeapDeclaration.

LocalVarDecls:
 var LocalVarDeclGroup *["," LocalVarDeclGroup].

LocalVarDeclGroup:
 Identifier *["," Identifier] ":" PossConstrainedTypeExpression;
 Identifier ":" AbbrevTypeExpression;
 Identifier ":" TypeExpression "!" "=" Expression;
 Identifier ":" "(" (ConstrainedTypeExpression | AbbrevTypeExpression) ")" "!" "="

Expression.

Variables, types, classes, functions, schemas, properties and axioms may be declared. The forms of
declarations in an implementation are similar to the forms of global declarations. Declarations within
implementations are referred to as local declarations and are not member declarations irrespective of whether
the implementation is for a member or nonmember entity.

Local variables may be initialized at the time of their declaration using the "!=" forms of declaration.

8.2.2 Let-statement

LetStatement:
 let Identifier "^=" Expression.

The let-statement is used to evaluate an expression and save the resulting value. It is similar to a constant
declaration except that the expression need not be a compile-time constant.
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8.2.3 Postcondition statement

The postcondition statement declares a postcondition to be satisfied. The rules defining what may be changed
are exactly as for schema postconditions. The postcondition may itself be implemented.

8.2.4 Labels

Labels serve as the targets for jumps. The syntax for a label is:

Label:
 Identifier ":" pre PredicateList.

The scope of a label is determined in the same way as the scope of a declaration (which means that it is not
possible to jump into an implementation from outside).

The label precondition must be satisfied at the point immediately prior to the label unless that point is
immediately after a jump. It must also be satisfied at all jumps to the label. Following the label, the only
knowledge available to the validation is the following:

The predicates in PredicateList• 
Type constraints on variables and parameters• 
All class invariants and preconditions on the current object (if the implementation is not permitted to
change it) and on all parameters (including those that can be modified) and local variables.

• 

Therefore, the predicate list must encapsulate all assumptions required to satisfy the proof obligations of the
following statements up to and including the next jump, label or completor (if any), or otherwise to the end of
the statement list.

[PO: the precondition is true on the fall-through.]

8.2.5 Jumps

A jump may be made to any label which is defined at a later point in the current implementation and is in
scope at the point of the jump, provided that the label precondition is satisfied at that point. The syntax is:

Jump:
 goto Identifier.

Labels obey the same scope rules as other declarations. Therefore, a label declared in an inner block cannot be
referred to from outside the block; so jumping into a block is not possible.

Jumps are permitted only if there are no declarations or let-statements (other than within block statements,
conditional statements, loops and nested implementations) between the jump and the target label.

[Note: it might be thought that jumps are anachronistic and have no place in a modern programming language;
however, there are some situations where their use can simplify the code substantially. By insisting on a
specification for the target of every jump, we tame the label/jump combination.]
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[SC: the identifier after goto corresponds to a label in scope and within the current implementation. The jump
is to a later point in the code.]

[PO: the precondition of the label which is the target of a jump is satisfied at the point of the jump.]

8.2.6 Loops

Loops have the following syntax:

Loop:
 loop

 LoopChangedVars
 keep PredicateList

            [until PredicateList]
 decrease Variant ";"
 ImplList [";"]

 end.

LoopChangedVars:
        [LocalVarDecls ";"] change ExpressionList;

 LocalVarDecls ";".

The loop begins with a set of local variable declarations (which will also usually initialize the variables),
together with, following the word change, a list of variables from the enclosing scope which the loop is
permitted to change. All variables other than those declared and listed in this section must remain constant.

The predicate list which follows keep is the loop invariant, a set of conditions which must be true at the start
of the loop and remain true throughout its execution. Together with the until part, the loop invariant forms the
postcondition for the loop.

The predicate list after until may be viewed both as a termination condition and as a partial postcondition for
the loop (if multiple comma-separated predicates are given, they are &ed together as usual). If no until part is
specified, the condition that the variant can no longer decrease is used (for example, if the variant consists of a
single integer value, the loop will terminate when it is zero)

The variant following decrease follows the same rules as for variants in recursive functions and schemas
(each iteration of the loop must decrease the variant).

Within the invariant, until-part and variant, primed expressions refer to the value of the expression at the start
of each iteration; unprimed subexpressions refer to the value before any part of the loop is executed. Only
objects which the loop is permitted to change may appear primed. Local variables must always appear primed
as they have no meaning before the loop is executed (since they are declared within the loop).

The final implementation comprises a loop body which decreases the variant while preserving the invariant.
This implementation may only modify local variables and terms which were declared in the change list.
Within the loop body primed and unprimed expressions have their usual meanings.
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[PO: The loop invariant is true on loop entry (where local variables have their initial values). The variant is
valid on loop entry. If the until part is false, the loop body preserves the loop invariant, and either decreases
the variant or causes the until part to become true.]

8.2.7 Assertions

Assertions declare a set of predicates to be true at a point in an implementation without further work being
necessary to achieve them, provided only that the original precondition is satisfied. They may serve as hints to
the theorem prover as well as additional validation checks. Even if an assertion is unproven, it is still assumed
satisfied during validation of the statements that follow. The syntax for assertions was given in section 5.4.2.

8.2.8 Conditional statement

ConditionalStatement:
 if Guard ImplList *[";"Guard ImplList] [";" LastImplGuard] fi.

LastImplGuard:
 EmptyGuard ImplList [";"];

        ";";
        "[" "]".

The conditional statement is structurally similar to the conditional expression except that the enclosing
brackets are replaced by if fi and each guard is followed by an implementation item list instead of an
expression. If no EmptyGuard part is present, at least one of the guards must be satisfied.

Each ImplList within a conditional statement defines a new scope; therefore any declarations within a branch
of a conditional statement are not visible in other branches, nor are they visible outside the conditional
statement.

8.2.9 Block statements

BlockStatement:
 begin ImplList [";"] end;
 par ImplList [";"] end.

The begin...end block statement puts the enclosed implementation in its own scope. The par...end statement
is similar, except all the statements in the list are notionally executed in parallel, and so must modify disjoint
objects.

8.2.10 Value completors

A value completor has the syntax:

ValueCompletor:
 value ExpressionList.
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Value completors are only allowed in value implementations (not in state implementations). The number of
expressions in ExpressionList must be one, except for implementations of functions that return multiple
results, in which case the number of expressions must either match the number of returned results or there
must be only one expression and this must take the form of a recursive call to the function. The expression(s)
must be provably equivalent to the required value(s) as defined in the specification of the function, operator,
selector or constructor which is being implemented. The effect of a value completor is to exit the entire
implementation, yielding the specified result value.

[PO: all variables and function calls in Expression which are not present in the original specification of the
value of the function can be eliminated using information about the state at this point and the result is
equivalent to the value of the function in the original specification.]

8.2.11 State completors

A state completor comprises the keyword done.

StateCompletor:
done.

State completors are only allowed in state implementations. There is an implicit assertion that the schema or
constructor postcondition which is being implemented has been satisfied at the point of a state completor. The
effect of a state completor is to exit the implementation.

There is an implicit state completor at the end of any state implementation whose final statement is not
discontinuous.

[PO: the required postcondition is satisfied at the point of a state completor.]

8.2.12 Throw statements

Throw statements raise or re-raise exceptions:

ThrowStatement:
 throw Expression;
 throw.

The first form raises a new exception, abandoning the containing implementation list. The second form, which
is valid only in the catch-part of a try-statement, re-throws the exception caught in the catch-part.

The exception that is thrown or re-thrown must either be caught in the catch-part of an enclosing try-statement
within the containing function, selector, operator, schema or constructor, or else it must be of a type contained
in the exception signature of the containing function, selector, operator, schema or constructor. This condition
is checked by the Perfect compiler.

Important note: The semantics of throw statements are not fully defined in this edition. In particular, there is
currently no requirement or verification condition that class invariants are preserved at the point a
throw-statement is executed. Therefore, if throw-statements are used in implementations that mutate objects,
then when the exception is caught, object invariants may have been broken. We strongly recommend that you
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use throw-statements only in contexts where no modifications to the state of any object have been made
between the start of the try-statement whose catch list catches the exception, and the throw-statement; except
that modifications to objects that have passed out of scope when the catch list is reached are safe. It is
expected that critical software will typically not use exceptions.

8.2.13 Try statements

A try statement executes a contained implementation, catching some or all exceptions that it may throw:

TryStatement:
 try ImplList [";"] catch CatchItem *[ ';' CatchItem] [";"] end.

CatchItem:
        '[' Identifier ':' TypeExpression ']' ':' ImplList.

The implementation list following the try keyword is executed. If that implementation list throws an
exception, then control is transferred to the catch list. Each catch item declares a type to be caught, an
identifier to name the value of the caught exception (so that it can be used in the following implementation
list), and an implementation list to be executed when catching exceptions of that type. The catch item that is
executed will be the first one (lexically) whose type is or includes the actual type of the exception that was
thrown. At most one catch item will be executed, even if the types declared in the catch items are not disjoint.
If the exception was of a type that is not contained in any of the types of the catch items, then it is not caught
in that catch list and continues to propagate out of the context surrounding the try statement.

8.3 Proof lists

Proof lists are used to give hints to the theorem prover about how an assertion or property might be proved.
The grammar is:

Proof:
 proof ProofList [";"] end.

ProofList:
 ProofItem *[";" ProofItem];

     *[ProofItem ";"]  if Guard ProofList *[";" Guard ProofList] [";"] fi.

ProofItem:
 Assertion;
 LetStatement.

A proof list contains a sequence of assertions and temporary name definitions separated by semicolons. The
last element in a proof may be a conditional proof. 

The theorem prover should attempt to prove the predicate lists in the order in which they are given, using each
assertion as an assumption when proving later assertions in the proof list. The prover will attempt to prove the
assertion to which the proof list is attached by assuming all assertions in the proof list are satisfied.
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9. Scopes, Overloading and Binding

9.1 Overview

This section describes the scope rules; i.e. the rules which determine whether it is legal to redefine a particular
identifier and how the compiler binds each use of an identifier to a declaration. The principles employed are: 

An identifier may be used to represent multiple entities in the same region provided that it is not
possible to write a construct in which the use of the identifier is ambiguous. 

• 

A declaration is never permitted to hide another declaration of the same identifier inherited from an
outer block. 

• 

The order of declarations within each block plays no part in determining the binding of the uses of
identifiers to the corresponding declarations. However, forward-referencing is prohibited where there
is no good reason to allow it.

• 

Within this chapter, the term "function" should be taken to encompass operators and selectors also.

9.2 Name spaces

Identifiers in Perfect fall into the following categories:

Class, type and class template parameter names• 
Constant, variable, parameter, function, selector and schema names• 
Heap names• 
Label names• 
Property and axiom names• 

The Perfect language is designed such that it can always be determined from context which category an
identifier belongs to. Each category therefore has its own name space (meaning that at any point in the
program, the same name may stand for one entity of each category).

9.3 Definition of the various declaration contexts

A declaration is global if it occurs within the global declaration list.• 
A declaration is local if it occurs within an implementation. All label declarations are local.• 
A declaration is member if occurs within a class abstract, internal, confined or interface section and is
not declared nonmember.

• 

A declaration is nonmember if occurs within a class abstract, internal, confined or interface section
and is declared nonmember.

• 

9.4 Overloading class and type names

Where an identifier is declared as the name of more than one class or type, each declaration must have a
distinct signature. The signature of a class or type declaration is defined as the number of template parameters
in the declaration together with the sequence of separators used to separate them.
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Within a class or type template declaration, the declaration of an identifier as a parameter is considered to
declare that identifier as a type name with no template parameters. Within a polymorphic function or schema
declaration, an identifier which follows the keyword class in the parameter list is considered to declare that
identifier as a type name with no template parameters.

It is not permitted to hide a class or class template declaration by means of a conflicting class or class template
declaration in an inner block.

[Note: we could permit such hiding, but then we would have to define the rules under which it is permitted,
which gets quite complicated when we consider inheritance. Or, to avoid having to make class template
parameter names distinct from all visible class names and template parameter names, we could use a different
syntax when referring to them, e.g. by prefixing template parameter names with class always, thereby giving
template parameter names a different namespace.]

9.5 Overloading variable and function names

At any point in the program, an identifier may represent any number of constants, variables, let-names,
functions, selectors, schemas and formal parameters, subject to the following rules provided that all of the
corresponding declarations have distinct signatures.

The signature of a declaration of a variable, function schema etc. comprises two elements:

A sequence of classes, which are the classes of its parameters (the implicit self parameter for class
members does not count). In evaluating this sequence, constraints are discarded and type names are
replaced by their definitions.

• 

A sequence of separators, which are the separators used to separate the parameters. • 

In the case of a variable, constant, parameter or let-declaration, both sequences are empty.

In the case of a polymorphic declaration, the sequence of classes will include polymorphic parameters and
class or type template instantiations that depend on one or more polymorphic parameters.

A declaration with a parameter list having a repeated section is considered as having an infinite family of
signatures. The members of this family are obtained by removing the keyword repeated and the following
group of parameters and separators, substituting instead one or more repetitions of that group, with a comma
inserted between repetitions.

Two signatures are distinct if any of the following is true:

They have different lengths• 
They have different separator sequences• 
There is an index into the two sequences of classes for which the corresponding items are disjoint
classes and neither is polymorphic or is an instantiation depending on a polymorphic parameter

• 

There are two indices into the two sequences of classes that have the same polymorphic class name in
one of the signatures and disjoint non-polymorphic classes in the other

• 
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9.6 Overloading operator and selector symbols

At any point in the program, a symbol may represent any number of operators and, in the case of indexing,
selectors; provided that all of the corresponding declarations have distinct signatures.

The signature of an operator declaration (or an indexing selector declaration) is a sequence of classes. For
declarations that are not members, this sequence comprises the parameter types. For member declarations with
no parameters, this sequence has a single entry which is the type of self. For member declarations with one
parameter, this sequence comprises the type of self followed by the type of the parameter if the formal
parameter follows the operator symbol in the declaration, or vice versa if the formal parameter declaration
precedes the operator symbol in the declaration.

Parameter declarations involving type names, constraints or polymorphic class names are handled in the same
way as for signatures of functions.

9.7 How binding is defined in Perfect

Binding in Perfect is defined in terms of dictionaries of available identifier definitions.

In each region in which identifiers may be used, there is a dictionary called the general dictionary. Every class
also has two dictionaries, called the member dictionary and the non-member dictionary.

Whenever an identifier or operator symbol is mentioned other than for the purposes of declaring it, the
appropriate dictionary is used to determine its meaning. If the identifier is preceded by an expression and then
"." or "!" then the member dictionary for the class corresponding to the type of the expression is used; if the
identifier is followed by "@" and then a class name then the non-member dictionary of this class is used;
otherwise, the general dictionary is used.

Binding of an identifier name is successful if the identifier is matched with an entry in the dictionary and
access restrictions do not prohibit the binding.

9.8 Uniting and Core

In describing the available dictionary, we sometimes define a new dictionary by uniting an old dictionary with
a set of new declarations. The resulting dictionary contains all definitions in the old dictionary together with
definitions corresponding to the new declarations.

The core of a dictionary is defined as all its class or type declarations, global constant declarations, heap
declarations, and local or nonmember function, operator, selector, schema, property and axiom declarations
(i.e. the original dictionary less its variable, parameter, non-global constant, and member declarations other
than heaps).

9.9 Definition of the general dictionary for various regions
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9.9.1 Global declaration list

The dictionary for the global declaration list is the imported environment dictionary united with the
declarations in the list.

9.9.2 General dictionary for declarations of functions, operators and
selectors

The basic general dictionary comprises the core of the dictionary for the region in which the declaration
occurs, united with:

the declarations of the parameters• 
for a member declaration, a declaration for self and the declarations of all members and non-members
of the class (including all inherited members) except constructors

• 

for a non-member declaration, all the non-members of the class• 

The dictionary for parameter lists, preconditions and result values is the basic dictionary.

The dictionary for postconditions and assertions is the basic dictionary united with a declaration for result .

9.9.3 General dictionary for declarations of schemas

The basic general dictionary comprises the core of the dictionary for the region in which the declaration
occurs, united with:

the declarations of the parameters• 
for a member declaration, a declaration for self and the declarations of all members of the class
(including all inherited members) except constructors

• 

The dictionary for parameter lists, preconditions, postconditions and assertions is the basic dictionary.

9.9.4 General dictionary for declarations of constructors defined using a
result expression

The basic general dictionary comprises the core of the dictionary for the region in which the declaration
occurs, united with the declarations of the parameters.

The dictionary for the parameter list, precondition and result expression is the basic dictionary.

The dictionary for the post-assertion is the basic dictionary united with a declaration for result.

9.9.5 General dictionary for declarations of constructors defined without
using a result expression

The basic general dictionary comprises the core of the dictionary for the region in which the declaration
occurs, united with the declarations of the parameters.
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The dictionary for the parameter list, preconditions and inherits-part is the basic dictionary.

The dictionary for the postcondition and post-assertion is the basic dictionary united with a declaration for self
and the declarations of all members of the class (including all inherited members) except constructors.

9.9.6 General dictionary for implementations

The dictionary for an implementation is the dictionary for the expression or postcondition it is implementing
united with the declarations in the implementation (excluding declarations within loops, conditional
statements and further implementations).

Within a loop statement, the dictionary for the variable declarations following the with keyword is the
dictionary for the implementation in which it occurs; the dictionary for all other regions of the statement is
that dictionary united with those variable declarations.

Within a conditional statement, the dictionary for the guards is the dictionary for the implementation in which
it occurs. The dictionary for each statement lost that follows a guard is that dictionary united with the
declarations in the statement list (excluding declarations within loops, further conditional statements and
implementations).

9.9.7 General dictionary for the inherits-part of a class declaration

The dictionary within a class inherits-part comprises the core of the dictionary for the region in which the
class declaration occurs united with the parameter names (if it is a template).

The dictionary for the optional class invariant directly following the inherits-part comprises that dictionary
united with the non-internal members of the inherited class (including inherited members) and a declaration
for self.

9.9.8 General dictionary for member declaration regions of a class
declaration

The dictionary for member declaration regions of a class declaration is the dictionary for the inherits-part,
united with all the declarations in the region (including nonmember declarations) and all non-internal
inherited members.

The dictionary for class invariants (other than those directly following an inherits-part) comprises that
dictionary united with a declaration for self.

9.9.9 Bracketed expressions

The dictionary within a bracketed expression is the dictionary for the region in which the expression occurs
united with its let-declarations.
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9.9.10 Expressions involving bound variables

The dictionary for a predicate following ":-" and for the expression following yield is the dictionary for the
region in which the construct occurs united with the bound variable declarations. Where a quantified
expression declares more than one bound variable declaration, the dictionary for each bound variable
declaration is the dictionary for the region united with the preceding bound variable declarations.

9.10 Class member dictionaries

A class member dictionary comprises all declarations (other than nonmember declarations) of functions,
operators, selectors and schemas in its abstract, internal, confined and interface sections, united with the
dictionary of its parent class (if any) less the parent class internal members. Declarations in the class override
declarations with identical signatures in the parent.

Each class also has a dictionary of constructors, comprising all constructor declarations in the class
declaration.

9.11 Access restrictions

Even if the use of an identifier matches an entry in the dictionary for the region in which it occurs, there may
be an access restriction prohibiting binding.

There are no access restrictions to class, heap or label declarations, nor to global, local or interface
declarations. 

Within class member declarations, full access is permitted to members of self and it in a subjunctive
expression whose initial value is self, which are declared in the same class as the current declaration, or which
are defined in the confined and interface sections of ancestor classes, with the following restrictions:

Within specification of abstract, confined and interface members, access to internal members is
prohibited

• 

Within abstract members defined before at least one abstract invariant, access to members with fewer
following invariants (including all confined and interface members) is prohibited

• 

Within internal members defined before at least one internal invariant, access to members with fewer
following invariants (including all confined and interface members) is prohibited

• 

Within class member declarations, access to members of objects of the same class other than self or it as
above is subject to the following additional restrictions:

Write access to abstract data members other than those declared as interface selectors is prohibited
(including those declared as confined selectors)

• 

Access to early schemas is prohibited• 

Access to class members from outside the class declaration is subject to the following restriction:

Access to abstract, internal and confined members is prohibited• 
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Where a member is declared in one section and redeclared or reimplemented in one or more other sections, it
is considered as belonging to all of these sections and access to it is permitted, provided that it belongs to at
least one section to which access is not prohibited.

9.12 Forward referencing and references to declarations in
imported files

A reference to an entity declared in an imported file is treated as a forward reference, since the order in which
the compiler processes a collection of files is not defined. In practice this has little effect because the only
declarations in imported files that can be referenced are global declarations.

Forward referencing of class and type declarations (other than class template parameter names) is permitted,
however infinite recursion is prohibited. In particular:

A type declaration may not define a new type in terms of itself, nor may a circular chain of type
declarations be constructed that has a similar effect

• 

A class declaration may not inherit from itself or from a template instantiation using itself as an actual
parameter, nor may a circular chain of inheritance relationships be constructed

• 

If a class is referred to within a type expression in one of its own member declarations, the reference
must be conditional either by the use of a when-clause or a union of types or a suitable template (e.g.
a sequence), such that it is possible to define a constructor for the class which is not infinitely
recursive; and similarly for any circular chain of such relationships

• 

Forward referencing of global and member constant and variable declarations is permitted; forward
referencing of local constant and variable declarations is prohibited.

Forward referencing of function, selector, operator and schema declarations is always permitted; so long as
for all circular chains of references thereby arising, an appropriate variant is declared for each declaration in
the chain. However, a class invariant may not forward reference any other declaration in the same class.

Forward referencing of let-declarations and parameters is prohibited.

Forward referencing of heap and label declarations is permitted.

Perfect Language Reference Manual, Version 7.0, February 2017.
© 2017 Escher Technologies Limited. All rights reserved.

Perfect Developer Language Reference Manual Version 6.0

9.11 Access restrictions 84



10. Interface to other languages

10.1 Overview

The Perfect compiler produces implementation code from the Perfect source. This code may be expressed
either in object module format or as source code in a target programming language.

It is often required to mix program elements written in Perfect with program elements written in a traditional
programming language. This section describes some facilities available to achieve this. The exact behavior
may be implementation-dependent and may depend on the target language.

10.2 Local pragmas

Where an identifier or operator declared in the Perfect source causes a corresponding identifier to be declared
in the output file, the compiler has default rules for generating the name of this external identifier from the
original Perfect identifier. A developer may override these rules by placing a Pragma after the identifier or
operator symbol being declared, or after the build keyword in a constructor declaration. The syntax is:

Pragma:
 pragma '(' PragmaName '=' NonEmptyStringLiteral [ ',' PragmaName '='

NonEmptyStringLiteral ]* ')'.

A pragma may immediately follow any identifier or operator being declared.

The most useful PragmaName in a local pragma is codename. The effect of using this pragma is that for all
instances of the identifier which bind to the declaration, the corresponding name in the generated code will be
as specified in the string literal. If you wish to change the name in the generated code for just one output
language, or to use different names for different output languages, then you can use pragma names adaname,
cppname, javaname and csharpname instead of codename.

Normally, the Perfect compiler performs any name-mangling necessary to avoid Perfect identifiers clashing
with reserved words in the output language or external names used in the run-time system or environment
interface. It is the developer's responsibility to avoid clashes when using pragmas to define the names used in
the generated code.

Local pragmas can also be used to change the generated code in other ways, for example to suppress reference
counting when generating C++.

10.2 Global pragmas

A global pragma has the same syntax as a local pragma, but is placed in the outermost declaration list of a
source file instead of being attached to an identifier, and is followed by a semicolon to separate it from the
following declaration. The global pragma will be applied to all subsequent identifiers declared at the
outermost level. A later global pragma will override an earlier one with the same PragmaName.
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The most useful PragmaName in a global pragma is adapackage. This pragma affects Ada (including
SPARK) code generation only. It causes subsequent declarations to be placed in a package of the specified
name. By this means, the declarations generated from a single Perfect source file can be split up into several
Ada packages, to avoid the circular with-dependencies that might otherwise occur in the generated code.
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11. Library overview
Library classes and methods are documented alphabetically in Appendix A. This section provides an overview
of commonly-used operations by category.

11.1 Order and sorting

The built-in class seq of X has a number of members that relate to the ordering of elements. Many of these
methods take a parameter of type from Comparator of X. The user may define the ordering required by
declaring a class that inherits from Comparator of T (where T is the type of elements concerned) and
defines the method compare. Predefined classes inheriting from Comparator of X are
SimpleComparator of X (which compares according to the ~~ operator) and ReverseComparator
of X (which defines the inverse ordering).

The sequence member isOrdered tests whether a sequence is ordered with respect to a comparator.
Functions isndec and isninc are specializations of isOrdered using SimpleComparator and
ReverseComparator respectively (so isndec means "is non-decreasing" according to normal element
comparison using the "~~" or "<" operator).

Schema sort sorts the sequence so that it is ordered with respect to the given comparator. Functions
permndec and permninc return new sequences which are sorted into nondecreasing and nonincreasing
order respectively. These functions are also provided as members of classes set of X and bag of X.

11.2 Input/output

The Environment class is the interface through which Perfect programs may interact with the outside
world. It is expected that in a future release of Perfect Developer, the environment class will be supplied as a
separate library.

All methods referred to in this section are members of class Environment unless otherwise stated.

11.2.1 Console input / output

The print schemas of class Environment output characters to the standard output stream (usually the
screen). The printStdErr schema outputs the given string to the standard error stream.

The readLine schema reads a line of text from the standard input stream (usually the keyboard); the value
of ret will be either success@FileError, attribError@FileError or
otherError@FileError. Note that the final line feed or carriage return + line feed are not returned.

The stdIn, stdOut and stdErr functions return the FileRef objects representing the standard input,
output and error streams. In a future version of the library, these methods may return streams instead.
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11.2.2 File operations

The open schema attempts to open a file named filename in the mode specified by the mode parameter as
follows:

create@FileModeType means a new file is created, and any existing file is deleted• 
append@FileModeType means the file is opened and data written will be appended to the
existing data

• 

read@FileModeType means the file may be read• 
text@FileModeType means the file is opened as a text file in the underlying operating system,
otherwise it is opened as a binary file

• 

The modes create@FileModeType and append@FileModeType are mutually exclusive. At least one
of create@FileModeType, append@FileModeType and read@FileModeType must be present.

If the open succeeds a FileRef is returned in the out parameter, otherwise a FileError is returned as follows:

fileNotFound@FileError means the file was not present, and neither
append@FileModeType nor create@FileModeType were specified

• 

attribError@FileError means the file was not accessible in the requested mode.• 

The close schema will attempt to close the given file. ret' will be set to either success@FileError is
the close was successful, or writeError@FileError if it failed in some way.

The print schemas output character data to a given file. If the write fails ret' will be equal to
writeError@FileError, otherwise it will be success@FileError.

The write schemas output binary data to a given file. The schema taking two int parameters will output the
integer n as a sequence of numBytes bytes, most significant byte first. If the integer to be written is too large
to fit into the specified number of bytes, the higher bytes will be lost. If the write fails, ret' will be equal to
writeError@FileError, otherwise it will be success@FileError.

The scan schemas read character data from a file. If the read succeeds ret' will be equal to
success@FileError, otherwise it will be either readError@FileError or
endOfFileError@FileError.

The readLine schema attempts to read a line of text from the given file. If successful line' contains the line
of text (including the linefeed and/or carriage return if present) and ret' = success@FileError. If the
read failed line' is the empty string and ret' = readError@FileError.

The read schemas read binary data from a file. If the read succeeds ret' will be equal to
success@FileError, otherwise it will be either readError@FileError or
endOfFileError@FileError.

The seek, fastForward and rewind schemas attempt to position the file pointer at a specified position
in the file. ret' will be set to either success@FileError is this was successful, or
seekError@FileError if it failed in some way.
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The fileSize schema returns the size of the data contained in a given file. The schema may change the file
pointer of the queried file only if the call fails, in which case res' will be seekError@FileError. If the
call succeeds, res' will be success@FileError, and the file pointer will be unchanged.

The tell function returns the position of the file pointer if it succeeds. If the call fails
seekError@FileError is returned.

The flush schema attempts to flush any buffer associated with the given file. ret' will be set to
success@FileError is the flush was successful, or to flushError@FileError if it failed in some
way.

The ghost functions  gIsOpen,  gFileData,  gFilePtr,  gFileAtEof and ghost schema 
gSetFilePtr can be used to reason about the file system.

11.2.3 Disk operations

The makeDirectory schema attempts to create the given directory; all directories below the specified one
will also be created if they are not already present. The returned FileError has the following meanings:

success@FileError: the directory was successfully created• 
permError@FileError: the process did not have permission to create the directory• 
createError@FileError: a file with the same name as the given directory already existed• 
diskFull@FileError: insufficient disk space• 
otherError@FileError: the directory could not be created for some other reason.• 

The move schema attempts to move and rename the file given by oldPath to that given by newPath. If
parameter overwrite is true then if the file newPath already exists it will be replaced by the moved file.
The res' parameter will be set to one of the following values:

success@FileError: the move succeeded• 
fileSpecError@FileError: one or both file names were illegal, or both pointed to the same
file

• 

attribError@FileError: the target file already exists, and overwrite is false• 
deleteError@FileError: the target file already exists and could not be deleted• 
fileNotFound@FileError: the source file did not exist• 
otherError@FileError: the move failed in some other way.• 

The delete schema will attempt to delete the given file. ret' will be set to one of the following values:

success@FileError: the delete succeeded• 
fileNotFound@FileError: the specified file did not exist• 
deleteError@FileError: the file could not be deleted.• 

The fileValid function returns true if the given file and pathname is legal and refers to an existing file or
directory.

The fileStatus function returns information on the given file or directory. If the pathname passed ends in
the pathSepChar then the call will only succeed if the path represents a directory. If the returned value is of
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type FileStats, the call succeeded and this is the information. Otherwise the result will be:

fileNotFound@FileError: the file did not exist• 
directoryNotFound@FileError: the path existed as a file, but the pathname ended in
pathSepChar

• 

otherError@FileError: no information could be found for some other reason.• 

The forceFileTime schema sets the last modified and accessed times on the given file. If either
modified or accessed is null, that attribute is not affected. res' will be one of the following values:

success@FileError: the dates were changed successfully• 
fileNotFound@FileError: the file did not exist• 
otherError@FileError: failed to change the dates for some other reason• 

The setMode schema (not implemented in the Java version of the runtime library) attempts to change the
file mode flags on the named file. res' will be one of the following values:

success@FileError: the mode was changed successfully• 
fileNotFound@FileError: the file did not exist• 
permError@FileError: permission was denied to change mode• 
otherError@FileError: failed to change mode for some other reason• 

The getImagePath function returns the full path and file name of the current executable.

The  normalizeFile function takes a path and file, and will return a FilePath object corresponding to
this file. If the file is not valid, the result is null.

The function getCurrentDirectory returns the current directory in the underlying file system. If the call
fails, the result is null. The schema setCurrentDirectory attempts to set the current directory to the
specified string; ret will be set to one of the following values:

success@FileError: the directory was successfully changed• 
directoryNotFound@FileError: the directory did not exist• 
permError@FileError: the process did not have permission the access the directory• 
otherError@FileError: the call failed in some other way• 

The constant  caseSensitiveFileNames indicates whether the file system distinguishes between upper
and lower case letters. The constant  pathSeparator is the character used to separate components of a
file name (e.g. `\` in Windows, `/` in Unix).

11.2.4 Opening sockets

The two socket open schemas attempt to open a socket connected to the specified port of the host given
either as a string or as an IP address. Returns either the socket if successful, or a socket error if not. Sockets
facilitate communication with other machines over a network or the internet.
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11.2.5 Other environment methods

 schema !(priority: int)
 pre priority in 1..20

Schema  setCurrentThreadPriority sets the priority of the current thread, where 1 is the lowest
priority and 20 the highest.

Schema execute (not currently implemented in the Java runtime library) attempts to run the command
command on the underlying operating system, passing arguments args, and optionally redirecting standard
in, out and error to files. The schema returns when the command has completed, and res will be set as
follows:

success@FileError: the command was successfully executed• 
fileNotFound@FileError: the command did not exist• 
attribError@FileError: a file of the stated name was found, but was not executable• 
otherError@FileError: execution failed in some other way• 

The clock function returns the number of clock ticks since the current executable was started;
clocksPerSecond returns the number of clock ticks in a second. Thus, for example, the time in seconds since
the current executable started is clock / clocksPerSecond.

Function  getCurrentDateTime returns the current date and time as a Time object.

Function  getEnvironmentVar returns the value of a given environment variable in the underlying
operating system, or null if the variable is not set.

The  getImageVersion functions return the version information for the current executable, or named
module.

Function  getMemoryUsed returns the amount of memory being used by the current executable.

Schema  garbageCollect causes the process to return unused memory to the operating system.

Function  getOsInfo returns the type and version of the underlying operating system.

11.2.6 Runtime checks and profiling

The setRuntimeOptionState, setRuntimeOption and clrRuntimeOption schemas can be
used to change the amount of checking performed at runtime (if runtime checks are being performed at all).
Schema setMaxCheckNestLevel determines how deeply checks will be performed. For example, if the
setting is 2, runtime check points reached while running the program will be evaluated, also any check points
reached whilst evaluating these check points will be evaluated; but runtime check points reached during this
second-level evaluation will be skipped.

To perform run-time profiling (only available in certain versions of the C++ runtime library), call schema to
begin collecting timing information. Calling schema  stopProfiling will suspend the collection of
timing information. To write the timing information to file, call schema  profile (which implicitly calls 
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stopProfiling) having already created the file. In order to use this mechanism, the macro _dProfile
must have been defined as 1 when compiling the generated C++ code.

11.3 Debugging functions

The global function debugPrint is provided to aid debugging, allowing diagnostic information to be output
to the console even where no Environment object is available. The return value serves no purpose.
Typically, this function will be invoked within a let-statement like this:

let dummy ^= debugPrint("Value of foo is " ++ foo.toString ++
"\n");

The function debugHalt also outputs the given string, but then causes execution to stop with a runtime
error.

11.4 Streams

Stream-based input/output is provided by the classes InputStream, OutputStream and their descendents
(ByteInputStream, FileInputStream, StandardInputStream and the corresponding output streams).

11.5 Serialization

Declaring a class storable implicitly means it inherits from Storable. This is the only way a class should
inherit from Storable, and directly declaring inherits Storable is not allowed.

Storable objects may be stored and re-loaded using the global storeObject and loadObject methods.
Note that there is no check that a loaded object satisfies any type constraints or class invariants defined for its
class.

The serialization formats used by the C++, C# and Java versions of the runtime system are not compatible
with each other.

11.6 Character encoding and decoding

An interface is provided to encode the Perfect char class into a sequence of bytes using a chosen scheme, and
to perform to corresponding decoding. It is expected that these will be integrated into the environment print
and scan methods in a future release of Perfect Developer.

The base class CharEncoderDecoder serves as an interface for generating encoders and decoders for
particular schemes. These encoders and decoders are returned as descendents of CharEncoder and
CharDecoder respectively.

An encoder simply contains a function which returns the encoding for any given character, plus a function to
return a preamble for the encoding scheme used.
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A decoder contains a process schema which is passed bytes until a complete character has been built, at
which point the method charReady will return true. The character may then be extracted using
getCompletedCharacter, the decoder may then be reset and further characters decoded.
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12. Application Startup and Initialization
An application may be written entirely in Perfect, or it may be written partly in Perfect and partly in a
traditional programming language. In the latter case, the program entry point may be in the portion of the
system written in Perfect, or in the portion written in the programming language. This chapter explains what
you need to do in these scenarios to ensure correct application startup and initialization.

12.1 Program entry point written in Perfect

The entry point of a program written in Perfect shall have the following signature:

schema main(args: seq of string,
             context!: limited Environment, ret!: out int)

 pre #args >= 1
 post ... ;

The first element of the args parameter contains the name by which the program was executed, if available, or
the empty string if not. The remaining elements of args are the command-line parameters.

The context parameter provides access to the Environment in which the program was executed, so that
input/output and similar operations with effects outside the program can be performed. Note that the stdin,
stdout and stderr streams are not guaranteed to be open, since on many platforms it is possible to close these
streams prior to executing a program.

The ret parameter provides means of returning a return code to the calling program. The program must assign
ret before terminating. By convention, a zero return code indicates successful execution.

The postcondition defines what effects the program has. For very simple programs, these affects can be
defined directly in the postcondition; for example:

schema main(args: seq of string,
             context!: limited Environment, ret!: out int)

 pre #args >= 1
 post context!print("Hello, world!\n") & ret! = 0;

More usually, you will need to maintain some state in the program. This state is best represented by the
abstract variables of some class. If this class is called Application then the main program could look like this:

final class Application ^=
abstract

 var context: Environment,
       ... ;        // declare other state variables here
interface

 build{!context: Environment}
 post ... ;     // initialise other state variables here

 schema !run(args: seq of string, ret!: out int)
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 post ... ;
end;

schema main(args: seq of string,
             context!: limited Environment, ret!: out int)

 pre #args >= 1
 post (var myApp: Application! = Application{context};  

         myApp!run(args, ret!)
        );

In this example, we have assumed that the application requires prolonged access to the context, but that it only
needs access to the arguments at the start ot a run. Hence we passed the context as a parameter to the
constructor, which stored it as part of the state; but we passed the arguments as parameters to the run schema.

12.2 Program entry point not written in Perfect

If the program entry point is not written in Perfect, and the part of the application that is written in Perfect
does not perform I/O or use other members of the Environment class, then no special initialization is needed.

If the part of the application that is written in Perfect does need access to an Environment, then it will be
necessary to write code in the target programming language to create a single instance of Environment, which
can then be passed to the Perfect part of the application. The Environment constructor takes a single
argument, which is the path to the directory from which the program was launched (for subsequent use by the
getImagePath member).
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Appendix A: Library Reference

A1. Global methods

The following global methods are defined. Some or all of these may be replaced by nonmember class methods
in future versions of the library.

function debugPrint(s: string): bool

  ^= ?;

Prints the string to standard output as an
unspecified side-effect.

function debugHalt(s: string): bool

  ^= ?;

Prints the string to standard output as an
unspecified side-effect, then halts the program
(possibly loading a debugger, if available).

function  flatten(s: seq of seq of
class X): seq of X

  ^= ( [s.empty]:
 seq of X{},

        []:
          ++over s
      );

Converts a sequence of sequences to a single
sequence by concatenating all the components.
Equivalent to using ++ over except that the operand
is allowed to be empty.

function flatten(s: set of set of class
X): set of X

 require X has operator =(arg) end
  ^= ( [s.empty]:

 set of X{},
        []:
          ++ over s
      );

Converts a set of sets to a single set by uniting all
the components. Equivalent to using ++ over
except that the operand is allowed to be empty.

function flatten(b: bag of bag of
class X): bag of X

 require X has operator =(arg) end
  ^= ( [b.empty]:

 bag of X{},
        []:
          ++ over b
      );

Converts a bag of bags to a single bag by uniting all
the components. Equivalent to using ++ over
except that the operand is allowed to be empty.

Similar to flatten but inserts the element t between
elements of s. Especially useful for converting a
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function  interleave(s: seq of seq of
class X, t: seq of X): seq of X

  ^= ( [s.empty]:
 seq of X{},

        []:
          s.head ++ flatten(for x::s.tail yield t ++ x)
      )
 assert #s ~= 0 & #t ~= 0 ==> #result ~= 0;

sequence of strings to a single string for printing,
inserting a separator (e.g. comma or newline)
between the elements.

function  loadObject (env:
Environment, strm: from
InputStream, minVersion,
maxVersion: nat): (from Storable) ||
SerialError

  ^= ?;

Attempts to load an object from the stream. Returns
the object retrieved if successful, otherwise the
reason for the failure.

function max(a, b: class X): X

  ^= ([a ~~ b = rank below]: b, []: a);

If the two parameters rank same, returns the first
one.

function max(a, b: class X, repeated
c: X): X

  ^= max(max(a, b), c.max);

function  min(a, b: class X): X

  ^= ([a ~~ b = rank above]: b, []: a);

If the two parameters rank same, returns the first
one.

function min(a, b: class X, repeated
c: X): X

  ^= min(min(a,b), c.min);

schema  storeObject (obj: from
Storable, env!: limited Environment,
strm: from OutputStream, version:
nat, err!: out SerialError || void)

 post ?;

Stores the specified object to the stream. The err
parameter is set to null if successful, otherwise it
holds the reason for the failure.

Swaps the values of the two parameters. May be
more efficient for some data types on some
platforms than using x! = y, y! = x directly.
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schema  swap(x!, y!: class X)

 post x!= y, y!= x;

A2. Classes

All of these classes inherit from class anything, except for classes anything and void.

Variables are only mentioned if they are public or are referred to in the specifications.

The ancestors given in the inherits parts are not necessarily the direct ancestors of the classes concerned,
since additional classes may be inserted in the inheritance chain for implementation reasons, or for future
extension.

For enumeration classes other than rank, additional values may be inserted or appended in future versions of
the library. The toString method of each enumeration class is redefined in the usual way, but not shown here.

anything

deferred class anything
This is ancestor of all classes defined in Perfect
(whether by the user or by the system) unless
declared public or external

Methods

function toString: string
 decrease ?
  ^= ?;

Return a textual representation of the value of the
object. The default returns the string "No output
string specified for this type" or similar. It should
be overridden in any class for which toString is
likely to be called. Recursive definitions of toString
are allowed.

bag of X

final class bag of X
A bag is an unordered collection of values.
Duplicate values are permitted and significant.

Constructors

build{}
 post ?
 assert result.empty;

Builds an empty bag
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build{repeated x: X}
 post ?;

Builds a bag containing the values in the parameter
list

Methods

operator (a: X)#: nat
 require X has operator =(arg) end
  ^= #(those x::self :- x = a);

Returns the number times the given value occurs in
the bag

operator (a: X) in: bool
 require X has operator =(arg) end
  ^= a in ran;

Returns true if the bag contains the parameter

operator #: nat
  ^= ?;

Returns the number of elements in the bag

operator **(a: bag of X): bag of X
 require X has operator =(arg) end
 satisfy forall x:X :- x # result = min(x # self, x #
a);

Returns the intersection of the bag with the
parameter

operator ##(a: bag of X): bool
 require X has operator =(arg) end
  ^= forall x::self :- x ~in a;

Returns true if the bag is disjoint with the
parameter

operator ++(a: bag of X): bag of X
 satisfy forall x:X :- x # result = x # self + x # a;

Returns the union of the bag with the parameter

operator --(a: bag of X): bag of X
 require X has operator =(arg) end satisfy
forall x:X :- x # result = max(x # self - x # a, 0);

Returns the difference between the bag and the
parameter

operator <<=(a: bag of X): bool
 require X has operator =(arg) end
  ^= forall x::self :- x # self <= x # a;

Returns true if the bag is a sub-bag of the
parameter

operator <<(a: bag of X):bool
 require X has operator =(arg) end
  ^= self <<= a & #self < #a;

Returns true if the bag is a strict sub-bag of the
parameter

function append(a: X): bag of X
 satisfy result >> self,
    #result = >#self,

 forall x::result :- x # result = ([x = a]: >(x #
self), [x ~= a]: x # self);

Returns a new bag like the original but with one
more instance of the parameter adjoined

function empty: bool
  ^= #self = 0;

Returnstrue if the bag is empty

function max: X
 require X has total operator ~~(arg) end

Returns the highest element in the bag
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 pre ~empty
  ^= that x::self :- forall y::self :- (x ~~ y) ~= rank
below;

function min: X
 require X has total operator ~~(arg) end
 pre ~empty
  ^= that x::self :- forall y::self :- (x ~~ y) ~= rank
above;

Returns the lowest element in the bag

opaque function omax: X
 pre ~empty
  ^= any x::self :- forall y::self :- (x ~~ y) ~= rank
below;

Returns a highest element in the bag. If the element
type has a total ordering, you should use max
instead.

opaque function omin: X
 pre ~empty
  ^= any x::self :- forall y::self :- (x ~~ y) ~= rank
above;

Returns a lowest element in the bag. If the element
type has a total ordering, you should use min
instead.

opaque function opermndec: seq of X
 satisfy result .ranb = self,
 result.isndec;

Returns a sequence comprising the elements of the
bag in a nondecreasing order. If the element type
has a total ordering, you should use permndec
instead.

opaque function opermninc: seq of X
 satisfy result .ranb = self,
 result.isninc;

Returns a sequence comprising the elements of the
bag in a nonincreasing order. If the element type
has a total ordering, you should use permninc
instead.

function permndec: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb = self,
 result.isndec;

Returns the sequence comprising the elements of
the bag in a nondecreasing order

function permninc: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb = self,
 result.isninc;

Returns the sequence comprising the elements of
the bag in a nonincreasing order

function ran: set of X
 require X has operator =(arg) end
 satisfy forall x:X :- x in result <==> x in self;

Converts the bag to a set by removing duplicates

function remove(a: X): bag of X
 require X has operator =(arg) end
 satisfy ([a in self]: a # result = <(a # self) &
result .append(a) = self, [a ~in self]: result = self);

Returns a new bag like the original except that if
there were one or more instances of the parameter
in the bag, the result contains one fewer instance
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function rep(a: nat): bag of X
 satisfy result .ran = self.ran,
 forall x::self :- x # result = a * (x # self)

Returns a new bag in which each element of the
original is replicated the number of times given by
the parameter

redefine function toString: string
  ^= ?;

Returns a textual representation of the bag

function unique: bool
 require X has operator =(arg) end
  ^= forall x::self :- x # self = 1;

Returns true if the bag contains no repeated values

bool

final class bool The Boolean type has values true and false.

Methods

operator &(arg: bool)
Equivalent (except for precedence) to: ([~self]:
false, []: arg)

operator | (arg: bool)
Equivalent (except for precedence) to: ([self]: true,
[]: arg)

operator ==> (arg: bool) Equivalent (except for precedence) to: ~self | arg

operator <== (arg: bool) Equivalent (except for precedence) to: self | ~arg

operator <==> (arg: bool) Equivalent (except for precedence) to: self = arg

redefine function toString
  ^= ([self]: "true", []: "false);

byte

final class byte
Represents an 8-bit byte. Used primarily for
reading and writing streams and files.

Constructors

build {bits: seq of bool}
 pre #bits = 8;

Constructs a byte from 8 bits (the most significant
bit istheBits[0])

build{arg: nat}
 pre arg < 256
  ^= byte
      { seq of bool

Constructs the byte representing the given number.
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        { arg >= 128,
          (arg % 128) >= 64,
          (arg % 64) >= 32,
          (arg % 32) >= 16,
          (arg % 16) >= 8,
          (arg % 8) >= 4,
          (arg % 4) >= 2,
          (arg % 2) = 1
        }
      }
 assert +result = arg;

Methods

operator +: nat
  ^= ?
 assert result < 256,
 byte{result} = self;

Returns the interpretation of the byte as an
unsigned integer.

total operator ~~(a) ^= +self ~~ +a;

operator .. (b: byte): seq of byte
  ^= ([b >= self ]: (self .. <b).append(b), [b <
self]:seq of byte {})
 assert result.isndec;

operator >: byte
 pre self ~= byte {255
  ^= byte{>+self};

operator <: byte
 pre self ~= byte{0
  ^= byte{<+self};

function and(arg: byte): byte
  ^= byte{for i::0..7 yield theBits[i] &
arg.theBits[i]};

function or (arg: byte): byte
  ^= byte{for i::0.. 7 yield theBits[i] |
arg.theBits[i]};

function compl: byte
  ^= byte {for i::0.. 7 yield ~theBits[i]};

function shl(arg: nat): byte
 pre arg < 8
  ^= byte{theBits.drop(8) ++ seq of bool{false
}.rep(arg)};
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function shr(arg: nat): byte
 pre arg < 8
  ^= byte{seq of bool{false}.rep(arg) ++
theBits.take(8-arg)};

redefine function toString: string
  ^= (+self).toString;

ByteData

final class ByteData
A memory buffer that can be used for stream
input/output

Data

var bytes: seq of byte The data held

var index: nat The index of the next byte to be read

Invariants

index <= #bytes

Constructors

build{}
 post bytes! = seq of byte{};

Builds an empty ByteData

build{!bytes: seq of byte}; Builds a ByteData from a byte array

Methods

function eof: bool
  ^= index = #bytes;

Returns true if there are no more bytes to be read

schema !get(b!: out byte)
 pre ~eof
 post b! = bytes[tell],
    index! + 1;

Retrieves the next byte and advances the pointer

schema !get(sb!: out seq of byte, len: nat)
 pre index + len <= #bytes
 post  sb! = bytes.slice(streamPos, len), streamPos!
+ len;

Retrieves the specified number of bytes

schema !put(b: byte)
 post bytes! = bytes.append(b), streamPos! + 1;
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schema !put(sb: seq of byte)
 post bytes! ++ sb;

function size: nat
  ^= #bytes;

ByteInputStream

class ByteInputStream ^= inherits InputStream An input stream that reads from data in memory

Constructors

build {!bytes: ref ByteData on StreamHeap}
 inherits InputStream{};

Builds a ByteInputStream from a reference to a
ByteData object

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream.

define ghost function gStreamData: seq of byte
  ^= bytes.value.bytes;

The data held by the stream

define ghost function gStreamPtr: nat
  ^= bytes.value .tell;

The index of the next element to be read

define ghost function gStreamAtEnd: bool
  ^= ?;

Returns true if there are no more bytes to be read

define schema !read(b!: out byte, ret!: out
FileError)
 post ?;

Reads a byte from the stream

schema !read(s!: out seq of byte, numBytes: nat,
ret!: out FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class InputStream

schema !read(n!: out int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class InputStream

schema !read(c!: out char, decoder!: limited from
CharDecoder, ret!: out FileError)
 pre isOpen

Inherited from class InputStream
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 post ?;

schema !read(r!: out real, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class InputStream

ByteOutputStream

final class ByteOutputStream ^= inherits
OutputStream

An output stream that writes to an area of memory

Constructors

build {!bytes: ref ByteData on
StreamHeap}inherits OutputStream{};

Builds a ByteOutputStream from a reference to a
ByteData object

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream.

define schema !flush
 post pass;

define schema !write(b: byte, ret!: out FileError)
 post ?;

Appends the byte to the memory buffer

define ghost function gStreamData: seq of byte
  ^= bytes.value.bytes;

The data in the memory buffer

schema !write(s: seq of byte, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream

schema !write(i: int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class OutputStream

schema !write(c: char, encoder: from
CharEncoder, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream

schema !write(r: real, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream
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char

final class char

Represents a single character. When compiling to
Java, the character set is Unicode; when compiling to
C++ it may be a variant of ASCII, or (depending on
code generation options chosen) Unicode.

Constructors

build{n: nat}
 post ?
 assert +self' = n;

Constructs the character whose numeric value in the
supported character set is equal to n.

Methods

total operator ~~(a)
  ^= +self ~~ +a;

Defines a total ordering of between characters

operator .. (b: char) :seq of char
  ^= ([b >= self ]: (self ..<b).append(b), [b <
self]:seq of char {})

 assert result.isndec;

operator >: char
  ^= char {>+self};

operator <: char
  ^= char {<+self};

operator +: nat
  ^= ?
 assert char{result } = self;

Returns the numeric value of the character in the
supported character set

function isLetter: bool
  ^= ?
 assert result ==> isPrintable, isDigit ==>
~result,

 self in " !\"$%^&*()-_=+[]{};:'@#~,<.>/?\\|`"
==> ~ result,

 self in "abcdefghijklmnopqrstuvwxyz" ++
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
==> result;

Returns true if the character is a letter.

function isLowerCase: bool ^= ?
 assert result ==> isLetter,
 result ==> ~isUpperCase,

    isDigit ==> ~result,

Returns true if the character is a lower case letter.
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 self in " !\"$%^&*()-_=+[]{};:'@#~,<.>/?\\|`"
==> ~ result,

 self in
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
==> ~result,

 self in "abcdefghijklmnopqrstuvwxyz" ==>
result;

function isUpperCase: bool ^= ?
 assert result ==> isLetter,
 result ==> ~isLowerCase,

    isDigit ==> ~result,
 self in " !\"$%^&*()-_=+[]{};:'@#~,<.>/?\\|`"

==> ~ result,
 self in

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
==> result,

 self in "abcdefghijklmnopqrstuvwxyz" ==>
~result;

Returns true if the character is an upper case letter.

function isDigit: bool
  ^= self in "0123456789";

Returns true if the character is a digit.

function isPrintable: bool
  ^= ?
 assert isLetter ==> result,
    isDigit ==> result,

 self in " !\"$%^&*()-_=+[]{};:'@#~,<.>/?\\|`"
==> result;

Returns true if the character is printable or a normal
space (i.e. not a control character)..

function digit: int
 pre isDigit
  ^= ?
 assert 0 <= result < 10,
 self = `0` <==> result = 0,
 self = `1` <==> result = 1,
 self = `2` <==> result = 2,
 self = `3` <==> result = 3,
 self = `4` <==> result = 4,
 self = `5` <==> result = 5,
 self = `6` <==> result = 6,
 self = `7` <==> result = 7,
 self = `8` <==> result = 8,
 self = `9` <==> result = 9;

Converts the character to the number it represents.

function toLowerCase: char
  ^= ?
 assert self .isUpperCase ==>
result.isLowerCase,

Returns the lower case version of the character, it it is
an upper case character; otherwise returns the
character unchanged.
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 ~self .isUpperCase ==> result = self;

redefine function toString: string
  ^= string{self };

function toUpperCase: char
  ^= ?
 assert self .isLowerCase ==>
result.isUpperCase,
    ~self .isLowerCase ==> result = self;

Returns the upper case version of the character, it it is
a lower case character; otherwise returns the
character unchanged.

CharDecoder

deferred class CharDecoder ^= inherits
CharEncoderDecoder

Constructors

build{}
 inherits CharEncoderDecoder{};

Methods

deferred function charReady: bool;
Returns true if the decoder has a completed
character.

final ghost function decode(input: seq of
byte):string
 decrease #input
  ^= ( let temp ^= getFirstChar(input);
        [temp = null]:

  string{},
        []:
          decode((temp is pair of (char, seq of
byte)).y).prepend((temp is pair of (char, seq of
byte)).x)
      );

Expresses the result of decoding a sequence of
bytes.

deferred function getCompletedCharacter: char
 pre charReady;

Retrieves the completed character.

final ghost function getFirstChar(input: seq of
byte): pair of (char, seq of byte) || void
 decrease #input
  ^= ( [#input = 0]:

 null as pair of (char, seq of byte) || void,
        []:
          ( let temp ^= self after

Decodes the next character from a byte string.
Returns null if the end of the string is reached first,
else the character and the rest of the input byte
string.
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it!process(input.head);
            [temp.charReady]:

 pair of (char, seq of byte)
{temp.getCompletedCharacter, input.tail},
            []:
              temp.getFirstChar(input.tail)
          )
      )
 assert result ~= null ==> #(result is pair of
(char, seq of byte)).y < #input;

deferred schema !process(bb: byte);
Consumes the byte, possibly giving rise to a
completed character

final ghost schema !process(sb: seq of byte)
decrease #sb
post ( [~sb.empty]:
            !process(sb.head) then !process(sb.tail),
          []
        );

Expresses the effect of consuming a sequence of
bytes

deferred schema !reset;

Resets the decoder, ready to decode the next
encoded character. This saves having to build a
new decoder every time another character is to be
decoded.

CharEncoder

deferred class CharEncoder ^= inherits
CharEncoderDecoder

Constructors

build{}
 inherits CharEncoderDecoder{};

Methods

deferred function encode(c: char): seq of byte; Encodes a character into a byte sequence

final ghost function encode(input: string): seq of
byte
decrease #input
  ^= ( [input.empty]:
          seq of byte{},
        []:
          encode(input.head) ++ encode(input.tail)

Expresses the byte sequence generated if an entire
character string is encoded.
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      );

deferred function preamble: seq of byte;
Returns the Byte Order Mark (if any) to generate at
the start of a text file or stream.

CharEncoderDecoder

class CharEncoderDecoder

Data

const encodingTable: map of (string -> pair of
(from CharEncoder, from CharDecoder)) ^= ?;

A table of character set names and the
corresponding encoders and decoders.

Constructors

build{};

Methods

nonmember function getDecoder(s: string): from
CharDecoder || void
  ^= ( [isRecognisedEncoding(s)]:
          encodingTable[s].yas from CharDecoder ||
void,
        []:

 null
      )
 assert isRecognisedEncoding(s) ==> result ~=
null;

Returns the decoder for the specified character set,
or null if the character set name is not recognized.

nonmember function getEncoder(s: string): from
CharEncoder || void
  ^= ( [isRecognisedEncoding(s)]:
          encodingTable[s].xas from CharEncoder ||
void,
        []:

 null
      )
 assert isRecognisedEncoding(s) ==> result ~=
null;

Returns the encoder for the specified character set,
or null if the character set name is not recognized.

nonmember function isRecognisedEncoding(s:
string ):bool
  ^= s in encodingTable
 assert s in set of string{"ascii", "utf8", ""} ==>
result;

Indicates whether the character set name is
recognized. ASCII (7-bit) and UFT8 character sets
are always recognized. [Note: support for UTF8
may be incomplete on platforms that use an 8-bit
character set.]
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Comparator of X

deferred class Comparator of X

Base class for constructing an object to compare
two values of type X. Used as a parameter to some
of the ordering and sorting methods for the built-in
collection classes.

Constructors

build{};

Methods

deferred function compare(a, b: X): rank;
This must be defined in descendent classes to
specify the ordering required. The definition must
satisfy the symmetry and transitivity properties.

final function notLessThan(a, b: X): bool
  ^= compare(a, b) ~= rank below;

Properties

property (a, b: X)
 assert compare(a, b) = rank same <==>
compare(b, a) = rank same,
    compare(a, b) = rank below <==> compare(b, a)
= rank above;

These symmetry properties must be obeyed by the
definition of 'compare' in a descendent class

property(a, b, c: X)
 assert compare(a, b) = rank same ==>
compare(a, c) = compare(b, c),
    compare(a, b) = rank below & compare(b, c) =
rank below ==> compare(a, c) = rank below;

These transitivity properties must be obeyed by the
definition of 'compare' in a descendent class

DebugType

class DebugType ^= enum preConditions,
postConditions, loopInvariants, loopVariants,
specVariants, impVariants, embAsserts,
postAsserts, lastChoices, classInvariants,
constraints end

Enumeration for control of runtime debug checks.
Each of these will only be effective when running a
debug build that had the relevant check enabled at
build time.
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Environment

final class Environment external
Class to describe the interface with the
operating system

Data

class File ^=
abstract
 var idata: seq of byte,
    iptr: nat;
 invariant iptr <= #idata;
interface
 ghost selector data: seq of byte ^= idata;
 ghost selector fileptr: nat ^= iptr;
 ghost function atEof: bool ^= fileptr = #data;
end;

var openFiles: map of (FileHandle -> File),
    stdInStream: StandardInputStream,
    stdOutStream, stdErrStream: StandardOutputStream;

const pathSeparator: char ^= ?;
const caseSensitiveFileNames: bool ^= ?;
function pathSeparator, caseSensitiveFileNames;

Methods

function clock: nat
  ^= ?;

Returns the number of clock ticks since the
program started. Depending on platform,
this may be either CPU time consumed or
elapsed time.

function clocksPerSecond: nat ^= ?
 assert result >= 1;

Returns the number of clock ticks per
second.

schema !close(f: FileRef, ret!: out FileError)
pre gIsOpen(f)
post change openFiles, ret
 satisfy (ret' = FileError success ==> openFiles' =
openFiles.remove(f.handle)),
    (ret' ~= FileError success) ==> openFiles' = openFiles;

Closed the file identified by the given file
reference

schema !clrRuntimeOption(debOpt: DebugType)
 post !setRuntimeOptionState(debOpt, false);

Disables debug checks of the specified type

Disables debug checks of the specified types
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schema !clrRuntimeOptions(debOpts: set of DebugType)
 post !setRuntimeOptionsState(debOpts, false);

schema !delete(pathname: string, ret!: out FileError)
 post ?;

Deletes the file with the specified name

schema !execute(command: string, args: seq of string,
stdin, stdout, stderr: FileRef || void, res!: out FileError)
 post ?;

Executes the specified command with the
specified command line arguments and the
specified standard input, output and error
streams. [This method is not yet available in
Java. In a future revision, the standard input,
output and error parameters will be streams
instead of file references.]

schema !fastForward(f: FileRef, ret!: out FileError)
pre gIsOpen(f)
post change openFiles[f.handle].fileptr, ret
 satisfy ret' = FileError success ==>
openFiles[f.handle].fileptr' = #openFiles[f.handle].data;

Moves the file pointer to the end of the file

schema !fileSize(f: FileRef, size!: out nat, ret!: out
FileError)
pre gIsOpen(f)
post change size, ret, openFiles[f.handle].fileptr
 satisfy ret' = FileError success ==> size' =
#openFiles[f.handle].data,
    openFiles[f.handle].fileptr' = openFiles[f.handle].fileptr;

Gets the size of an open file. This is a
modifying schema because it may change
the file pointer if it fails.

function fileStatus(pathname: string): FileStats || FileError
  ^= ?;

Returns status information about a file,
including the times it was created, last
modified and last accessed; its size; and its
attributes, i.e. read-only, archive, system,
directory (size will be 0 if this attribute is
returned). Returns the FileStats object
containing the information described, or a
FileError describing the problem. If a path
ending with the path separator character is
passed, this is taken as an assertion that the
path refers to a directory, and so if the path
actually refers to a file instead of a directory,
the error 'directoryNotFound' is returned.

function fileValid(pathname: string): bool
  ^= ?;

Returns true if the file specified is
accessible on the local file system (i.e.
whether an open in read mode or a file status
operation would succeed).

schema !flush(f: FileRef, ret!: out FileError)
 pre gIsOpen(f)

Flushes any data held in buffers to the disk,
console or printer concerned
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 post ?;

schema !forceFileTime(filename: string, modified,
accessed: Time || void, res!: out FileError)
 post ?;

Forces the time attributes on a file. The
schema will fail if the file does not exist or
is currently open.

schema !garbageCollect
 post pass;

Invokes the garbage collector of the
run-time system provided by the
implementation language, or attempts to
reduce memory fragmentation in other
ways. In a typical C++ implementation,
memory held in free-lists in thePerfect
run-time system is returned to the C++
memory manager.

function getCurrentDateTime: Time
  ^= ?;

Returns the system date and time.

function getCurrentDirectory: string || void
  ^= ?;

Returns the current default directory.

function getEnvironmentVar(envVar: string): string ||
void
  ^= ?;

Returns the value of the specified
environment variable, ornull if no variable
of that name is defined.

function getImagePath: string
  ^= ?
 assert #result = 0 | result.last = pathSeparator;

Returns the directory from which the
program was loaded, if available.

function getImageVersion: seq of int
  ^= getImageVersion("")
 assert #result > 0;

Returns version information for the main
module of the current program. On
Windows platforms, a sequence of four
integers is returned in this order: Major
version, Minor version, Revision, Build
number. If no version information is
available, a single zero is returned.

function getImageVersion(moduleName: string): seq of
int
  ^= ?
 assert #result > 0;

Returns version information for the
specified module of the current program, or
the main module if moduleName is the
empty string. On Windows platforms, a
sequence of four integers is returned in this
order: Major version, Minor version,
Revision, Build number. If no version
information is available, a single zero is
returned.

function getMemoryUsed: nat
  ^= ?;

Returns the total number of bytes of
memory allocated to the program (up to a
maximum of 2GB on a 32-bit platform).
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function getOsInfo: OsInfo
  ^= ?;

Returns operating system information. Note
that windows2000 will be detected as
'windowsNT' with the major version as 5.

function getRuntimeLanguage: string
  ^= ?;

Returns the name of the programming
language for which the runtime was built.
Currently this is one of "c++", "c#" or
"java".

ghost function gFileAtEof(f: FileRef): bool
 pre gIsOpen(f)
  ^= openFiles[f.handle].atEof;

Expresses whether the file pointer is at the
end of the file.

ghost selector gFileData(f: FileRef): seq of byte
 pre gIsOpen(f)
  ^= openFiles[f.handle].data;

Expresses the contents of the file.

ghost function gFilePtr(f: FileRef): nat
 pre gIsOpen(f)
  ^= openFiles[f.handle].fileptr;

Expresses the value of the file pointer.

ghost function gIsOpen(f: FileRef): bool
  ^= f.handle in openFiles.dom;

Expresses whether the specified file is open.

ghost schema !gSetFilePtr(f: FileRef, pos: nat)
 pre gIsOpen(f),
    pos <= gFilePtr(f)
 post openFiles[f.handle].fileptr! = pos;

Expresses the concept of setting the file
pointer.

schema !makeDirectory(pathname: string, err!: out
FileError)
 post ?;

Creates the directory specified by
'pathname', including all components that do
not already exist.

schema !move(oldPath, newPath: string, overwrite: bool,
res!: out FileError)
 post ?;

Moves the file specified by oldPath to
newPath, overwriting any existing file if
overwrite is true. Directories cannot be
moved by this method. If the call fails, the
error return res is set to one of the following
values:

FileNotFound if 'oldPath' does not
specify an existing file

• 

AttribError if 'newPath' specifies an
existing file and the overwrite
argument was false

• 

DeleteError if we failed to delete
the existing target when trying to
overwrite it

• 

FileSpecError if oldPath and
newPath specify the same file or if

• 

Perfect Developer Language Reference Manual Version 6.0

Environment 115



either are invalid
OtherError for any other problem
(for example, if oldPath specifies a
directory).

• 

Only the 'last-accessed' attributes on the
moved file is changed; all others are
preserved.

function normalizeFile(path: string, fileName:string):
FilePath || void
 pre #path = 0 | path.last = pathSeparator
  ^= ?;

Splits fileName into path and filename
components, assuming that the default
directory is path.

schema !open(filename: string, mode: set of
FileModeType, f!: out FileRef || FileError)
 pre #(set of FileModeType{FileModeType read,
FileModeType create, FileModeType append} ** mode)
~= 0,
  ~(set of FileModeType{FileModeType create,
FileModeType append} <<= mode)
 post change openFiles, f
 satisfy (f' within FileRef) ==>

      ( let fileHandle ^= (f' is FileRef).handle;
        openFiles'.dom= openFiles.dom.append(fileHandle)
        & openFiles'[fileHandle].fileptr = 0
        & (forall x::openFiles.dom :- openFiles'[x]=
openFiles[x])
        & (FileModeType create in mode ==>
#openFiles[fileHandle].data = 0)
        & ((FileModeType create in mode | FileModeType
append in mode) <==> (f' is FileRef).fileWritable)
      ),
      (f' within FileError) ==> openFiles'= openFiles;

Opens the specified file in the specified
mode. The mode must include at least one of
append, read or create; but may not include
both append and create.

schema !open(hostname: string, port: nat, mode:
SocketMode, s!: out Socket || SocketError)
 post ?;

Opens a socket at the specified port at the
specified named host.

schema !open(ipAddress: seq of byte, port: nat, mode:
SocketMode, s!: out Socket || SocketError)
 pre #ipAddress = 4
 post ?;

Opens a socket on the specified port at the
specified IP address.

schema !print(c: char)
 post change stdOutStream.charData satisfy ?
 assert self'.stdOutStream.isOpen = stdOutStream.isOpen,
    stdOutStream.isOpen ==> self'.stdOutStream.charData
= stdOutStream.charData.append(c);

Writes the character to standard output.
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schema !print(s: string)
 post change stdOutStream.charData satisfy ?
 assert self'.stdOutStream.isOpen = stdOutStream.isOpen,
    stdOutStream.isOpen ==> self'.stdOutStream.charData
= stdOutStream.charData ++ s;

Writes the string to standard output.

schema !print(f: FileRef, c: char, ret!: out FileError)
 pre gIsOpen(f), f.fileWritable
 post !write(f, seq of byte{byte{+c}}, ret!);

Writes the character to the specified file.

schema !print(f: FileRef, s: string, ret!: out FileError)
 pre gIsOpen(f), f.fileWritable
 post !write(f, for x::s yield byte{+x}, ret!);

Writes the string to the specified file.

schema !printStdErr(s: string)
 post change stdErrStream.charData satisfy ?
 assert self'.stdErrStream.isOpen = stdErrStream.isOpen,
    stdErrStream.isOpen ==> self'.stdErrStream.charData =
stdErrStream.charData ++ s;

Writes the string to the standard error
stream.

schema !profile(f: FileRef, ret!: out FileError)
 pre gIsOpen(f), f.fileWritable
 post ?

Stops collecting profile data and writes
profiling information to the specified file.
The data will be empty unless startProfiling
has been called previously.

schema !read(f: FileRef, b!: out byte, ret!:out FileError)
 pre gIsOpen(f)
 post change openFiles[f.handle].fileptr, b, ret
 satisfy ret' = FileError success ==>

    openFiles[f.handle].fileptr < #openFiles[f.handle].data
    & b' =
openFiles[f.handle].data[openFiles[f.handle].fileptr]
    & openFiles[f.handle].fileptr' =
>openFiles[f.handle].fileptr;

Reads a byte from the file.

schema !read(f: FileRef, s!: out seq of byte, len: nat, ret!:
out FileError)
pre gIsOpen(f)
post change openFiles[f.handle].fileptr, s, ret
 satisfy ( let ptr ^= openFiles[f.handle].fileptr;
    let remainingData ^= openFiles[f.handle].data.drop(ptr);
        ( ret' = FileError success ==>
          len <= #remainingData
          & s' = remainingData.take(len)
          & openFiles[f.handle].fileptr' = ptr + len
        )
    & ( ret' = FileError success ==>
          len > #remainingData
          & s' = remainingData

Reads up to len bytes from the file.
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          & openFiles[f.handle].fileptr' =
#openFiles[f.handle].data
        )
    );

schema !read(f: FileRef, n!: out int, numBytes:nat, ret!:
out FileError)
 pre gIsOpen(f), numBytes > 0
 post ?;

Reads numBytes bytes from the file and
interprets them as an integer in big-endian
format.

schema !read(f: FileRef, r!: out real, ret!:out FileError)
 pre gIsOpen(f)
 post ?;

Reads a number of bytes (typically 8) from
file and interprets them as a floating-point
number (typically assuming IEEE double
precision format).

schema !readLine(line!:out string, ret!: out FileError)
 post change stdInStream.charData, line, ret satisfy ?
 assert `\n` ~in line',
    line' ++ "\n" ++ self'.stdInStream.charData =
stdInStream.charData
    | (line' = stdInStream.charData &
self'.stdInStream.charData.empty)
    | (line' = "" & ret' ~= FileError success);

Reads a line of text from standard input. The
final line-feed or carriage-return and
line-feed are discarded and not returned.

schema !readLine(f: FileRef, line!: out string, ret!: out
FileError)
 pre gIsOpen(f)
 post ?;

Reads a line of text (i.e. a data block ending
in either linefeed or end-of-file) from the
specified file. The final line-feed or
carriage-return and line-feed are discarded
and not returned.

schema !rewind(f: FileRef, ret!: out FileError)
 pre gIsOpen(f)
 post !seek(f, 0, ret!);

Moves the file-pointer to the start of the file.

schema !scan(f: FileRef, s!: out string, len:nat, ret!: out
FileError)
 pre gIsOpen(f)
 post ?;

Attempts to read up to len characters from
the file.

schema !scan(f: FileRef, c!: out char, ret!:out FileError)
 pre gIsOpen(f)
 post ?;

Attempts to read a single character from the
file.

schema !seek(f: FileRef, pos: nat, ret!: out FileError)
 pre gIsOpen(f)
 post change openFiles[f.handle].fileptr, ret
 satisfy ret' = FileError success ==>

openFiles[f.handle].fileptr' = pos;

Sets the file pointer to the given file position
as a byte offset from the start of the file.

Sets the current directory.
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schema !setCurrentDirectory(path: string, ret!: out
FileError)
 post ?;

schema !setCurrentThreadPriority(priority: int)
 pre priority in 1..20
 post ?;

Sets the priority of the current thread, where
1 is the lowest priority and 20 is the highest.

schema !setMaxCheckNestLevel(level: nat)
 post ?;

Sets the nesting level to which debug checks
are performed (i.e. when debug checks occur
while evaluating debug checks).

schema !setMode(fname: string, atts: set of FileAttribute,
res!:out FileError)
 pre atts <<= set of FileAttribute{FileAttribute read,
FileAttribute write, FileAttribute execute}
 post ?;

Sets the attributes of the file with the
specified name.

schema !setRuntimeOption(debOpt: DebugType)
 post !setRuntimeOptionState(debOpt, true);

Enables debug checks of the specified type.

schema !setRuntimeOptions(debOpts: set of DebugType)
 post !setRuntimeOptionsState(debOpts, true);

Enables debug checks of the specified types.

schema !setRuntimeOptionState(debOpt: DebugType,
state: bool)
post !setRuntimeOptionsState(set of
DebugType{debOpt}, state);

Enables (if state is true) or disables (if state
is false) debug checks of the specified type.

schema !setRuntimeOptionsState(debOpt: set of
DebugType, state: bool)
 post ?;

Enables (if state is true) or disables (if state
is false) debug checks of the specified types.

schema !startProfiling
 post ?

Starts collecting profiling data, if the
program has been built with profiling
enabled; otherwise ignored.

function stdErr: StandardOutputStream
  ^= stdErrStream;

Returns a stream corresponding to standard
error output.

function stdIn: StandardInputStream
  ^= stdInStream;

Returns a stream corresponding to standard
input.

function stdOut: StandardOutputStream
  ^= stdOutStream;

Returns a stream corresponding to standard
output.

function tell(f: FileRef): nat || FileError
 pre gIsOpen(f)
 satisfy (result within nat) ==> result =
openFiles[f.handle].fileptr;

Returns the current file position as a byte
offset from the start of the file.
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schema !write(f: FileRef, b: byte, ret!: out FileError)
 pre gIsOpen(f), f.fileWritable
 post !write(f, seq of byte{b}, ret!);

Writes a single byte to the file.

schema !write(f: FileRef, s: seq of byte, ret!: out
FileError)
 pre gIsOpen(f), f.fileWritable
 post change openFiles[f.handle].data,
openFiles[f.handle].fileptr, ret

 satisfy ret' = FileError success ==>
        ( let ptr ^= openFiles[f.handle].fileptr;

 let oldData ^= openFiles[f.handle].data;
          openFiles[f.handle].data' = oldData.take(ptr) ++ s ++
([ptr + #s < #oldData]: oldData.drop(ptr + #s), []: seq of
byte{})
        & openFiles[f.handle].fileptr' = ptr + #s
        ),
        ret' ~= FileError success ==>
openFiles[f.handle].data'.begins(openFiles[f.handle].data);

Writes a sequence of bytes to the file.

schema !write(f: FileRef, i, numBytes: int, ret!: out
FileError)
 pre gIsOpen(f), f.fileWritable, numBytes > 0
 post ?;

Writes an integer of the specified size
(number of bytes) to the file.

schema !write(f: FileRef, r: real, ret!: out FileError)
 pre gIsOpen(f), f.fileWritable
 post ?;

Write a real number in binary format to a
file (typically 8 bytes in IEEE
double-precision format).

FileAttribute

class FileAttribute ^= enum read, write, execute,
archive, system, hidden, directory end;

Enumeration class to describe the various attributes
of a file.

FileError

class FileError ^=
enum
  success,
  endOfFile,
  fileNotFound,
  directoryNotFound,
  fileNotOpen,
  diskFull,
  readError,

Error codes returned by the various file system
methods.

The value 'success' indicates no error.

The directoryNotFound value is generated by the
filestatus schema of class Environment if a path that
ends with a path separator is passed and the path
refers to a file instead of a directory; and by
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  writeError,
  flushError,
  seekError,
  deleteError,
  attribError,
  fileSpecError,
  permError,
  createError,
  closeError,
  otherError
end

setCurrentDirectory if the path specified does not
exist.

FileHandle

class FileHandle ^= tag
Class used internally to refer to open files in an
Environment

FileInputStream

final class FileInputStream ^= inherits
InputStream

Constructors

build {!fref: FileRef, !env: Environment}
 inherits InputStream{};

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream and its associated file.

define ghost function gStreamAtEnd: bool
  ^= ?;

define ghost function gStreamData: seq of byte
  ^= env.gFileData(fref);

define ghost function gStreamPtr: nat
  ^= env.gFilePtr(fref);

define schema !read(b!: out byte, ret!: out
FileError)
 post ?;

Inherited from class InputStream.
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schema !read(s!: out seq of byte, numBytes: nat,
ret!: out FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

schema !read(n!: out int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class InputStream.

schema !read(c!: out char, decoder!: limited from
CharDecoder, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class InputStream.

schema !read(r!: out real, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class InputStream.

FileMode

class FileMode
This is a namespace class that provides some
constant definitions

Data

const read ^= set of FileModeType{FileModeType
read};
const create ^= set of
FileModeType{FileModeType create};
const append ^= set of
FileModeType{FileModeType append};
const readText ^= set of
FileModeType{FileModeType read, FileModeType
text};
const createText ^= set of
FileModeType{FileModeType create,
FileModeType text};
const appendText ^= set of
FileModeType{FileModeType append,
FileModeType text};
function read, create, append, readText, createText,
appendText;

These constants represents commonly-used modes.
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FileModeType

class FileModeType ^= enum read, create, append,
text end

Enumeration describing the modes in which a file
may be opened.

FileOutputStream

final class FileOutputStream ^= inherits
OutputStream

Constructors

build {!fref: FileRef, !env: Environment}
 inherits OutputStream{};

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream and its associated file, flushing
any buffered data to the file.

define schema !flush
 post ?;

Flushes any buffered data to the file.

define ghost function gStreamData: seq of byte
  ^= ?;

define schema !write(b: byte, ret!: out FileError)
 post ?;

Writes a byte to the file.

schema !write(s: seq of byte, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream.

schema !write(i: int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class OutputStream.

schema !write(c: char, encoder: from
CharEncoder, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream.

schema !write(r: real, ret!: out FileError)
 pre isOpen

Inherited from class OutputStream.
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 post ?;

FilePath

final class FilePath
Type returned by Environment function
normalizeFile to hold the split components, path
and file.

Data

var pathName, fileName: string;
function pathName, fileName;

Invariants

#pathName > 0,
pathName.last = Environment pathSeparator,
Environment pathSeparator ~in fileName;

Constructors

build {!pathName, !fileName: string}
 pre #pathName > 0,
    pathName.last = Environment pathSeparator,
    Environment pathSeparator ~in fileName;

Methods

redefine function toString: string
  ^= ?
 assert result ~= "";

FileRef

final class FileRef
Encapsulates a FileHandle object. Returned by
members of class Environment that create or open
files.

Methods

function fileWritable: bool
  ^= ?;

ghost function handle: FileHandle
  ^= ?;
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FileStats

final class FileStats
Hold status information for a file as returned from
the environment function fileStatus.

Data

var created, lastModified, lastAccessed: Time,
  attribs: set of FileAttribute,
  size: nat ;
function created, lastModified, lastAccessed,
attribs, size;

Constructors

build {!created, !lastModified, !lastAccessed:
Time, !attribs:set of FileAttribute, !size: nat};

Methods

redefine function toString: string
  ^= ?;

GuardedObject of X

final class GuardedObject of X

Data

var guard: bool,
 when [guard]:
    object: X
 end;
function guard, object;

Constructors

build{}
 post guard! = false;

build {!object: X}
 post guard! = true;
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InputStream

deferred class InputStream

Constructors

build{}
 inherits Stream{};

Methods

operator =(other);

deferred schema !close(ret!: out FileError)
 pre isOpen
 assert ~self'.isOpen;

Closes the stream, making it unavailable for
subsequent input and releasing any associated
resources.

deferred ghost function gStreamAtEnd: bool;

deferred ghost function gStreamPtr: nat
 assert result <= #gStreamData;

deferred schema !read(b!: out byte, ret!: out
FileError)
 pre isOpen
 assert self'.isOpen,
 self'.gStreamData = gStreamData,
 self'.gStreamPtr = ([ret'= FileError success]:

gStreamPtr + 1, []: gStreamPtr),
    ret' = FileError success ==> gStreamPtr <
#gStreamData & b' = gStreamData[gStreamPtr];

Basic schema for reading a byte from a stream.

schema !read(s!: out seq of byte, numBytes: nat,
ret!: out FileError)
 pre isOpen,
    numBytes ~= 0
 post ?   assert self'.isOpen,
 self'.gStreamData = gStreamData,

    ( [ret' = FileError success]:
        1 <= #s' <= numBytes
        & self'.gStreamPtr = gStreamPtr + #s'
        & s' =
gStreamData.drop(gStreamPtr).take(#s'),
      []:
        s' = seq of byte{}
    );
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schema !read(n!: out int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?
 assert self'.isOpen, self'.gStreamData =
gStreamData;

schema !read(c!: out char, decoder!: limited from
CharDecoder, ret!: out FileError)
 pre isOpen
 post ?
 assert self'.isOpen, self'.gStreamData =
gStreamData;

schema !read(r!: out real, ret!: out FileError)
 pre isOpen
 post ?
 assert self'.isOpen, self'.gStreamData =
gStreamData;

int

final class int ^= storable
A class representing zero and the positive and
negative integers

Constructors

build {s: string}
 pre #s > 0,
 forall x::s :- x.isDigit

  ^= ( [#s > 1]:
        10 * s.head.digit + nat {s.tail},
      []:
        s.head.digit
    )
 assert result >= 0;

Builds a non-negative integer from its string
representation in decimal.

Methods

total operator ~~(a)
  ^= ?;

The usual ordering between integers (the successor
of n ranks above n)

operator +(a: int): int
  ^= ?;

Addition.

Addition.
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operator +(a: real ): real
  ^= real{self} + a;

operator -: int
  ^= ?;

Negation.

operator -(a: int):int
  ^= ?;

Subtraction.

operator -(a: real):real
  ^= real{self} - a;

Subtraction.

operator *(a: int): int
  ^= ?;

Multiplication.

operator *(a: real ): real
  ^= real{self} * a;

Multiplication.

operator /(a: int): int
 pre a > 0
  ^= ?;

Division, rounding towards minus infinity.

operator /(a: real): real
 pre a ~= 0.0
  ^= real{self} / a;

Division.

operator %(a: int): int
 pre a > 0
  ^= ?
 assert result in 0..<a;

Modulo (remainder).

operator ^(a: nat): int
  ^= ?;

Exponentiation.

operator ^(a: real ): real
 pre a > 0.0
  ^= real{self} ^ a;

Exponentiation.

operator >: int
  ^= self + 1;

Successor.

operator <:int
  ^= self - 1;

Predecessor.

operator .. (b: int): seq of int
 decrease b
  ^= ([b < self]: seq of int{}, [b >= self]: (self ..
<b).append(b))
 assert result.isndec;

Returns the sequence of all integers in the given
range (inclusive) in ascending order.

function abs: nat Returns the absolute value.
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  ^= ([self >= 0]: self, [self <= 0]: -self);

function intln: nat
 pre self >= 0
  ^= ([self = 0]: 0, [self > 0]: that i::0..self :- 2 ^ i
<= self & 2 ^ (i + 1) > self);

Returns the logarithm to base 2, rounded down.

redefine function toString: string
  ^= ?
 assert result ~= "";

Returns the integer as a string in minimum-width
format, i.e. "0" or "###" or "-###" where ### is a
nonempty digit string with no leading zeros.

map of (X -> Y)

final class map of (X->Y)
 require X has operator =(arg) end

This class represents a mapping from elements of
type X to elements of type Y.

Constructors

build{}
 post ?
 assert self'.pairs.empty;

build{repeated a:X -> b:Y}
 pre forall i::0..(#a-2) :- forall j::>i..<#a :- a[i] =
a[j] ==> b[i] = b[j]
 post ?
 assert self'.pairs = (for i::0..<#a yield pair of (X ,
Y){a[i] , b[i]}).ran,

 forall i::0..<#a :- self'[a[i]] = b[i];

build{p: set of pair of (X,Y)}
 require Y has operator =(arg) end
 pre forall x, y::p :- x = y | x.x ~= y.x
 post ?
 assert self '.pairs = p;

build {a: seq of pair of (X,Y)}
 require Y has operator =(arg) end
 pre forall x, y::a :- x = y | x.x ~= y.x
 post ?
 assert self '.pairs = a.ran;

Methods

operator #: nat
  ^= #pairs;
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operator ++(a: map of (X->Y)): map of (X->Y)
 require Y has operator =(arg) end
 pre forall x::dom**a.dom :- self[x] = a[x]
  ^= map of (X->Y){pairs ++ a.pairs}
 assert result.dom = dom ++ a.dom,
 forall x::dom :- result [x] = self[x],
 forall x::a.dom :- result[x] = a[x];

operator --(a: set of X): map of (X->Y)
  ^= map of (X->Y){those x::pairs :- x.x ~in a};

operator **(a: set of X): map of (X->Y)
  ^= map of (X->Y){those x::pairs :- x.x in a};

operator ##(a: map of (X->Y)): bool
  ^= dom ## a.dom;

operator ##(a: set of X): bool
  ^= dom ## a;

selector [](a: X): Y
 pre a in dom
  ^= ?
 assert result = (that x::pairs :- x.x = a).y;

operator (a: X) in: bool
  ^= exists x::pairs :- x.x = a;

function append(a: pair of (X,Y)): map of (X->Y)
 require Y has operator =(arg) end
 pre a.x in self ==> a.y = self[a.x]
  ^= map of (X->Y){pairs.append(a)};

function append(a: X -> b: Y): map of (X->Y)
 require Y has operator =(arg) end
 pre a in self ==> b = self[a]
  ^= map of (X->Y){pairs.append(pair of (X,Y){a ,
b})};

function dom: set of X
  ^= for p::pairs yield p.x;

function empty: bool
  ^= #self = 0;

function pairs: set of pair of (X,Y)
  ^= ?
 assert forall a, b::result :- a.x = b.x ==> a = b;

This returns the contents of the mapping viewed as
a set of (domain element, range element) pairs.

function ran: set of Y
 require Y has operator =(arg) end
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  ^= for x::pairs yield x.y;

function ranb: bag of Y
  ^= for p::pairs.rep(1) yield p.y;

function remove(a: X): map of (X->Y)
  ^= map of (X->Y){those x::pairs :- x.x ~= a};

function testIndex(a: X): GuardedObject of Y
  ^= ( [a in self ]:
        GuardedObject of Y{self [a]},
      []:
        GuardedObject of Y{}
    );

redefine function toString: string
  ^= ?
 assert result ~= "";

nat

class nat ^= int >= 0; The naturals comprise the non-negative integers.

OsInfo

class OsInfo ^= storable
This is the type returned by Environment function
getOsInfo to hold the operating system type and
version information.

Data

var type: OsType,
  osMajorVersion: nat,
  osMinorVersion: nat,
  spMajorVersion: nat,
  spMinorVersion: nat;
function type, osMajorVersion, osMinorVersion,
spMajorVersion, spMinorVersion;

The operating system type, its major and minor
version numbers and its service pack major and
minor version numbers.

Constructors

build {!type: OsType, !osMajorVersion,
!osMinorVersion, !spMajorVersion,
!spMinorVersion: nat};

Constructor to set operating system type, operating
system major & minor versions and service pack
major & minor versions (for Microsoft operating
systems).
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build{!type: OsType, !osMajorVersion,
!osMinorVersion: nat}
 post spMajorVersion! = 0, spMinorVersion! = 0;

Constructor to set operating system type and
operating system major & minor versions only.

Methods

redefine function toString: string
  ^= ?
 assert result ~= "";

OsType

class OsType ^= enum unknown, windows95,
windows98, windowsNT, linux end

Note that Windows 2000 reports itself as Windows
NT version 5.

OutputStream

deferred class OutputStream

Constructors

build{}
 inherits Stream{};

Methods

operator =(other);

deferred schema !close(ret!: out FileError)
 pre isOpen
 assert ~self'.isOpen;

Closes the stream, making it unavailable for
subsequent output and releasing any associated
resources.

deferred schema !flush(ret!: out FileError)
 pre isOpen
 assert self'.isOpen, self'.gStreamData =
gStreamData;

Flushes any buffered data to the device concerned.

deferred schema !write(b: byte, ret!: out
FileError)
 pre isOpen
 assert self'.isOpen,
    ret' = FileError success ==> self'.gStreamData =
gStreamData.append(b);

Perfect Developer Language Reference Manual Version 6.0

OsInfo 132



schema !write(s: seq of byte, ret!: out FileError)
 pre isOpen
 post ?
 assert self'.isOpen,
    ret' = FileError success ==> self'.gStreamData =
gStreamData ++ s;

schema !write(i: int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?
 assert self'.isOpen;

schema !write(c: char, encoder: from
CharEncoder, ret!: out FileError)
 pre isOpen
 post ?
 assert self'.isOpen;

schema !write(r: real, ret!: out FileError)
 pre isOpen
 post ?
 assert self'.isOpen;

pair of (X, Y)

final class pair of (X, Y) ^= storable

Data

var x: X, y: Y;
selector x, y;

Constructors

build {!x: X , !y: Y};

Methods

operator ~~(a)
  ^= ( let t1 ^= x ~~ a.x;
        [t1 = rank same ]:
          y ~~ a.y,
        []:
          t1
      );
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redefine function toString: string
  ^= ?
 assert result ~= "";

rank

class rank ^= enum below, same, above end
The class used to express the result of a comparison
between two values.

real

final class real ^= storable
A class representing real numbers stored to some
limited precision (typically IEEE double-precision
format).

Constructors

build{a: int}
  ^= ?;

Constructs a real from the given integer.

Methods

total operator ~~(a)
  ^= ?;

Higher numbers rank above lower numbers.

operator +(a: real): real
  ^= ?;

Addition.

operator +(a: int): real
  ^= self + real {a};

Addition.

operator -: real
  ^= ?;

Negation.

operator -(a: real): real
  ^= ?;

Subtraction.

operator -(a: int): real
  ^= self - real {a};

Subtraction.

operator *(a: real): real
  ^= ?;

Multiplication.

operator *(a: int ): real
^= self * real{a};

Multiplication.
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operator /(a: real): real
 pre a ~= 0.0
  ^= ?;

Division.

operator /(a: int): real
 pre a ~= 0
  ^= self / real{a};

Division.

operator ^(a: real): real
 pre a > 0.0
  ^= ?;

Exponentiation.

operator ^(a: int): real
 pre self ~= 0.0 | a ~= 0
  ^= self ^ real{a};

Exponentiation.

function abs: real
  ^= ([self >= 0.0]: self, [self <= 0.0]: -self)
 assert result >= 0.0;

Absolute value.

function isInfinite: bool
  ^= ?;

Returns true if the given value represents of
positive or negative infinity.

function isNaN: bool
  ^= ?;

Returns true if the given value represents a
not-a-number.

function rounddn: int
 satisfy real{result} <= self & real{>result} >
self;

Return integral part, rounding towards minus
infinity.

function roundin: int
  ^= ([self >= 0.0]: rounddn, [self <= 0.0]:
roundup);

Return integral part, rounding towards zero.

function roundout: int
  ^= ([self >= 0.0]: roundup, [self <= 0.0]:
rounddn);

Return integral part, rounding away from zero.

function roundup: int
 satisfy real{result} >= self & real{<result} <
self;

Return integral part, rounding towards plus infinity.

redefine function toString: string
  ^= ?
 assert result ~= "";

Returns a string representation of the real number.

Perfect Developer Language Reference Manual Version 6.0

real 135



ReverseComparator of X

final class ReverseComparator of X ^= inherits
Comparator of X

This comparator compares objects according to the
reverse of their normal rank ordering.

Constructors

build{}
 inherits Comparator of X{};

Methods

define function compare(a, b: X): rank
  ^= b ~~ a;

final function notLessThan(a, b: X): bool
  ^= compare(a, b) ~= rank below;

Inherited from class Comparator of X.

seq of X

final class seq of X An ordered list of elements.

Constructors

build {}
 post ?
 assert #self';=0;

Builds an empty sequence.

build{repeated x: X}
 post ?;

Builds a sequence containing the elements
in the parameter list.

Methods

total operator ~~(b)
 ^= ( let len ^= #self;

 let lenb ^= #b;
    [len = 0 = lenb]:

 rank same,
    [len = 0 ~= lenb]:

 rank below,
    [len ~= 0 = lenb]:

 rank above,
    [len ~= 0 ~= lenb]:
      ( let temp ^= self.head ~~ b.head;
        [temp = rank same]:
          self.tail ~~ b.tail,
        []:

Ordering operator. Compares the lengths
first; only compares the elements if the
lengths are the same.
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          temp
      )
    );

operator #: nat
  ^= ?;

Returns the number of elements in self.

operator (elem: X) #: nat
 require X has operator =(arg) end
  ^= #(those i::dom :- elem = self[i]);

Returns the number of times elem occurs in
self.

operator ++(other: seq of X): seq of X
 satisfy #result = #self + #other,
 forall x::dom :-result[x] = self[x],
 forall x::other.dom :- result[x + #self] = other[x];

Returns a new sequence comprising self
followed by other.

operator (elem: X) in: bool
 require X has operator =(arg) end
  ^= exists i::dom :- self [i] = elem;

Returns true if and only if self has the
element elem.

operator (other: seq of X)<<=: bool
 require X has operator =(arg) end
  ^= exists i::0..(#self -#other) :- slice(i, #other) = other;

Returnstrue if and only if other is a
subsequence of self. See also the begins
and ends methods.

operator (other: seq of X)<<: bool
 require X has operator =(arg) end
  ^= a <<= self & self ~= other;

Returns true if and only if other is a strict
subsequence of self.

selector [](index: nat): X
 pre index < #self
  ^= ?;

Accesses the element at position index. The
first element has index zero.

function append(elem: X): seq of X
 satisfy #result = >#self,
    result.front = self,
    result.last = elem;

Returns a new sequence comprising self
with elem appended.

function begins(other: seq of X): bool
 require X has operator =(arg) end
  ^= #other <= #self & self.take(#other) = other;

Returns true if and only if other is a
leading subsequence of self.

function dom: set of nat
  ^= (for i::0.. <#self yield i is nat).ran;

Returns the set of all the valid indices of
self.

function drop(howMany: nat): seq of X
 pre howMany <= #self
 satisfy #result = #self - howMany,
    forall i::result.dom :- result[i] =self[i + howMany];

Returns a copy of self with howMany
leading elements removed.

function empty: bool
  ^= #self = 0;

Returnstrue if and only if self contains no
elements.
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function ends(other: seq of X): bool
 require X has operator =(arg) end
  ^= #other <= #self & self.drop(#self - #other) = other;

Returns true if and only if other is a
trailing subsequence of self.

function findFirst(token: X): int
  ^= ( [token in self]:
        (those i::self.dom :- self[i] = token).min,
      []:
        -1
    );

Returns the index of the first occurrence of
token inself, or -1 if it does not occur.

function findFirst(arg: seq of X): int
  ^= ( [arg <<= self]:
        (those i::0..#self :- self.drop(i).begins(arg)).min,
      []:
        -1
    );

Returns the index of the first occurrence of
arg inself, or -1 if it does not occur.

function findLast(token: X): int
  ^= ( [token in self]:
        (those i::self.dom :- self[i] = token).max,
      []:
        -1
    );

Returns the index of the last occurrence of
token in self, or -1 if it does not occur.

function findLast(arg: seq of X): int
  ^= ( [arg <<= self]:
        (those i::0..#self :- self.drop(i).begins(arg)).max,
      []:
        -1
    );

Returns the index of the last occurrence of
arg in self, or -1 if it does not occur.

function front: seq of X
 pre #self ~= 0
 satisfy #result = <#self,
 forall x::result .dom :- result[x] =self[x];

Returns a copy of self with the last element
removed.

selector head: X
 pre ~empty
  ^= self[0];

Returns the first element of self.

function insert(index: nat, a: X): seq of X
 pre index <= #self
  ^= take(index).append(a)++drop(index);

Returns a new sequence comprising the
original with the given element inserted
before the element at index.

function insert(index: nat, a: seq of X):seq of X
 pre index <= #self
  ^= take(index)++ a ++drop(index);

Returns a new sequence comprising the
original with the given sequence inserted
before the element at index.
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function insertndec(x: X): seq of X
 pre isndec
  ^= orderedInsert(x, SimpleComparator of X{})
 assert result.isndec;

Returns a new sequence comprising the
original nondecreasing sequence with the
given element inserted at the latest possible
position that preserves the ordering.

function insertninc(x: X): seq of X
 pre isninc
  ^= orderedInsert(x, ReverseComparator of X{})
 assert result.isninc;

Returns a new sequence comprising the
original nonincreasing sequence with the
given element inserted at the latest possible
position that preserves the ordering.

function isndec: bool
  ^= #self <= 1 | (forall i::1..<#self :- (self[i] ~~ self[<i]) ~=
rank below);

Returns true if self is nondecreasing
according to the standard ordering relation
on its elements.

function isninc: bool
  ^= #self <= 1 | (forall i::1..<#self :- (self[i] ~~ self[<i]) ~=
rank above);

Returns true if self is nonincreasing
according to the standard ordering relation
on its elements.

function isOrdered(cp: from Comparator of X): bool
  ^= forall i::1..<#self :- cp.notLessThan(self[i],self[<i]);

Returns true if self is nondecreasing
according to the ordering defined by cp .

selector last: X
 pre ~empty
  ^= self[<#self ];

Returns the last element of self.

function max: X
 pre ~empty
  ^= self[that x::0..<#self :- (forall y::0..<#self :- self [y] ~~
self[x] ~= rank above) & (forall y::0..<x :- self[y] ~~
self[x] ~= rank same)];

Returns the highest value from self. If the
element type does not have a total ordering
and there are several different elements in
self that rank same with each other but
above all other elements, returns the
earliest one.

function mergendec(other: seq of X): seq of X
 pre isndec, other.isndec
  ^= orderedMerge(other, SimpleComparator of X{})
 assert result.isndec;

Merges other into self. Elements of other
appear in the result after elements of self
with which they rank same.

function mergeninc(other: seq of X): seq of X
 pre isninc, other.isninc
  ^= orderedMerge(other, ReverseComparator of X{})
 assert result.isninc;

Merges other into self. Elements of other
appear in the result after elements of self
with which they rank same.

function min: X
 pre ~empty
  ^= self[that x::0..<#self :- (forall y::0..<#self :- self [y] ~~
self[x] ~= rank below) & (forall y::0..<x :- self[y] ~~ self
[x] ~= rank same)];

Returns the lowest value from self. If the
element type does not have a total ordering
and there are several different elements in
self that rank same with each other but
below all other elements, returns the
earliest one.
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opaque function opermndec: seq of X
 satisfy result .ranb = ranb,
    result.isndec;

Returns a copy of the sequence sorted into
a nondecreasing order. If the element type
has a total ordering, you should use
permndec instead.

opaque function opermninc: seq of X
 satisfy result .ranb = ranb,
 result.isninc;

Returns a copy of the sequence sorted into
a nonincreasing order. If the element type
has a total ordering, you should use
permninc instead.

function orderedInsert(elem: X, cp: from Comparator of
X): seq of X
 pre isOrdered(cp)
 satisfy result.isOrdered(cp) & result .ranb
=self.ranb.append(x);

Returns a new sequence comprising the
original ordered sequence with elem
inserted at the latest possible position that
preserves the ordering.

function orderedMerge(other: seq of X, cp: from
Comparator of X): seq of X
 pre isOrdered(cp), other.isOrdered(cp)
 satisfy result .isOrdered(cp) &result.ranb = self.ranb ++
other.ranb;

Merges other into self. Elements of other
appear in the result after elements of self
with which they rank same.

opaque schema !osort(cp: from Comparator of X)
 post change self satisfy self'.isOrdered(cp),
 self'.ranb = ranb;

Sorts the sequence into a nondecreasing
order according to the ordering defined by
cp. If cp provides a total ordering on the
element type, you should use sort instead.

function permndec: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb = ranb,
 result.isndec;

Returns a copy of self sorted into
nondecreasing order.

function permninc: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb = ranb,
 result.isninc;

Returns a copy of self sorted into
nonincreasing order.

function prepend(a: X): seq of X
 satisfy #result = >#self,
 result.head = a,
 result.tail = self;

Returns a new sequence comprising the
original with the parameter prepended.

function ran: set of X
 require X has operator =(arg) end
 satisfy forall x:X :- (x in result) = (x in self);

Creates a set from the elements by
removing duplicates and ordering.

function ranb: bag of X
 require X has operator =(arg) end
 satisfy #result = #self,
    forall x::result :- x # result = x #self;

Creates a bag from the elements by
removing the ordering.
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function remove(index: nat): seq of X
 pre index < #self
  ^= take(index) ++ drop(>index);

Creates a copy of self with the element at
the given position removed.

function remove(index: nat, length: nat):seq of X
 pre length+index <= #self
 satisfy result = take(index) ++ drop(index + length);

Creates a copy of self with length elements
starting at position index removed.

function rep(n: nat): seq of X
 satisfy #result = #self * n,
    forall j::0.. <n, i::dom :- result[i + (j * #self)] = self[i];

Produces a new sequence by concatenating
self n times.

function rev: seq of X
 satisfy #result = #self,
    forall x::dom :- result[#self-x-1] =self[x];

Produces the sequence with the elements in
reverse order.

function slice(index, length: nat): seq of X
 pre index+length <= #self
 ^= drop(index).take(length);

Returns length elements starting at offset
index.

schema !sort(cp: from Comparator of X)
 pre forall x,y: X :- cp.compare(x, y) = rank same ==> x =
y
 post change self satisfy self'.isOrdered(cp),
 self'.ranb = ranb;

Sorts the elements into nondecreasing
order according to the ordering defined by
cp.

function split(token: X): seq of seq of X
 require X has operator =(arg) end
  ^= ( let bounded ^= append(token).prepend(token);

 let token_indices ^= those i::0..<#bounded :- bounded[i]
= token;

 for i::0..(#token_indices-2) yield
bounded.take(token_indices[i+1]).drop(token_indices[i]+1)
    )
 assert #result > 0;

Splits the sequence into a sequence of
sequences, using the specified token
element to determine the split points.

function tail: seq of X
 pre #self ~= 0
 satisfy #result = <#self,
 forall x::result .dom :- result[x] =self[>x];

Returns a new sequence comprising self
with the first element removed.

function take(n: nat): seq of X
 pre n <= #self
 satisfy #result = n,
 forall i::0..<n :- result[i] = self[i];

Returns a new sequence comprising the
first n elements of self.

redefine function toString: string
  ^= ?
 assert result ~= "";

Returns a textual representation of self.
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function unique: bool
 require X has operator =(arg) end
  ^= forall x::dom :- ~(exists y::>x..<#self :- self[y] = self
[x])
 assert result <==> #self = #(self.ran);

Returns true if no value occurs more than
once in self.

SerialError

final class SerialError

Data

var id: SerialErrorType,
  msg: string;
function id, msg;

Constructors

build {!id: SerialErrorType, !msg: string};

SerialErrorType

class SerialErrorType ^=
enum
  // General system errors ...
  writeError, internalError, readError,
  // Storage-stream system errors ...
  systemVersionError, userVersionError,
streamError, missingInstantiation,
  missingHeap, missingType, unexpectedType,
corruptStream,
  // Catchall system error
  unspecifiedError
end;

set of X

final class set of X
 require X has operator =(arg) end

An unordered collection of elements in which
duplicates are not permitted

Constructors
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build {}
 post ?
 assert self'.empty;

Builds an empty set

build{repeated x: X}
post ?;

Builds a set containing the parameters (any
duplicates are removed)

Methods

operator #: nat
  ^= ?;

Cardinality of self.

operator ##(a: set of X): bool
  ^= forall x::self :- x ~in a;

Disjointness operator.

operator ++(a: set of X): set of X
 satisfy forall x:X :- x in result <==> x in self | x
in a;

Union.

operator --(a: set of X): set of X
 satisfy forall x:X :- x in result <==> x in self & x
~in a;

Difference.

operator **(a: set of X): set of X
  ^= those x::self :- x in a;

Intersection.

operator <<=(a: set of X): bool
  ^= forall x::self :- x in a;

Subset.

operator <<(a: set of X): bool
  ^= self <<= a & #self < #a;

Strict subset.

operator (a: X) in: bool
  ^= ?;

Membership.

function append(a: X): set of X
 satisfy self <<= result,
    a in result,

 forall x::result :- x = a | x in self;

Adds an element to self, returning a new set.

function empty: bool
  ^= #self = 0;

function max: X
 require X has total operator ~~(arg) end
 pre ~empty
  ^= that x::self :- forall y::self :- (x ~~ y) ~= rank
below;

Return the maximum element from self.

function min: X
 require X has total operator ~~(arg) end

Return the minimum element from self.
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 pre ~empty
  ^= that x::self :- forall y::self :- (x ~~ y) ~= rank
above;

opaque function omax: X
 pre ~empty
  ^= any x::self :- forall y::self :- (x ~~ y) ~= rank
below;

Return a maximum element from self. If the
element type has a total ordering, you should use
max instead.

opaque function omin: X
 pre ~empty
  ^= any x::self :- forall y::self :- (x ~~ y) ~= rank
above;

Return a minimum element from self. If the
element type has a total ordering, you should use
min instead.

opaque function opermndec: seq of X
 satisfy result .ranb = self.rep(1),
 result.isndec;

Returns a sequence comprising the elements of self
in nondecreasing order. If the element type has a
total ordering, you should use permndec instead.

opaque function opermninc: seq of X
 satisfy result .ranb = self.rep(1),
 result.isninc;

Returns a sequence comprising the elements of self
in nonincreasing order. If the element type has a
total ordering, you should use permninc instead.

function permndec: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb =self.rep(1),
 result.isndec;

Returns the sequence comprising the elements of
self in nondecreasing order

function permninc: seq of X
 require X has total operator ~~(arg) end
 satisfy result.ranb =self.rep(1),
 result.isninc;

Returns the sequence comprising the elements of
self in nonincreasing order

function remove(a: X): set of X
 satisfy result <<= self,
    a ~in result,

 self = result | self = result.append(a);

Removes an element to self, returning a new set

function rep(a: nat): bag of X
 satisfy result .ran = self,
 forall x::self :- x # result = a;

Returns a bag comprising each element of self
repeated a times

redefine function toString: string
  ^= ?
 assert result ~= "";
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SimpleComparator of X

final class SimpleComparator of X ^= inherits
Comparator of X

This comparator compares objects using their
normal rank ordering.

Constructors

build{}
 inherits Comparator of X{};

Methods

define function compare(a, b: X): rank
  ^= a ~~ b;

final function notLessThan(a, b: X): bool
  ^= compare(a, b) ~= rank below;

Inherited from class Comparator of X

Socket

final class Socket
Represents a socket for communicating over a
network. [A future version of the library is likely to
support sockets as streams instead.]

Methods

schema !awaitConnection(res!: out bool)
 post ?;

Wait for a connection, blocking until one arrives
(for server mode sockets only).

schema !closeSocket(res!: out bool)
 post ?;

function getLastError: SocketError
  ^= ?;

Returns the last network error recorded.

function getRemoteAddress: seq of nat
 pre gIsServerSocket
  ^= ?
 assert #result = 4;

function getRemotePort: nat
 pre gIsServerSocket
  ^= ?;

ghost function gIsServerSocket: bool
  ^= ?;

schema !read(res!: out byte || SocketError) Reads a single byte from the socket.
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 post ?;

schema !read(numBytes: nat, res!: out (seq of
byte) || SocketError)
 pre numBytes > 0
 post ?;

Reads the specified number of 8-bit bytes from the
socket specified. Blocks until all bytes read or an
error is encountered. Returns the sequence of bytes
read, in the order read, or an appropriate socket
error.

schema !read(rdata!: out seq of byte, res!: out
bool)
post ?
 assert #rdata' > 0;

Read currently available data from the socket as a
sequence of bytes.

schema !read_noblock(rdata!: out seq of byte, res!:
out bool)
 post ?;

Read data if any is available but don't block if not,
just return an empty sequence.

schema !write(data: byte, res!: out SocketError)
 post ?;

schema !write(data: seq of byte, res!: out
SocketError)
 pre #data > 0
 post ?;

SocketError

class SocketError ^= enum success, unknownHost,
ioError, generalError, invalidAddress, initError,
invalidSocket, wrongType, connectionNotOpen
end

SocketMode

class SocketMode ^= enum client, server end

StandardInputStream

final class StandardInputStream ^= inherits
InputStream

Class returned by method stdIn of class
Environment.

Data

Perfect Developer Language Reference Manual Version 6.0

Socket 146



var charData: seq of char;
ghost function charData;

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream.

define ghost function gStreamAtEnd: bool
  ^= ?;

define ghost function gStreamData: seq of byte
  ^= env.gFileData(fref);

define ghost function gStreamPtr: nat
  ^= env.gFilePtr(fref);

define schema !read(b!: out byte, ret!: out
FileError)
 post ?;

Reads a byte from the stream.

schema !read(s!: out seq of byte, numBytes: nat,
ret!: out FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class InputStream.

schema !read(n!: out int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class InputStream.

schema !read(c!: out char, decoder!: limited from
CharDecoder, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class InputStream.

schema !read(r!: out real, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class InputStream.

StandardOutputStream

final class StandardOutputStream ^= inherits
OutputStream

Class returned by methods stdOut and stdErr of
class Environment.

Data
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var charData: seq of char;
ghost function charData;

Methods

define schema !close(ret!: out FileError)
 post ?;

Closes the stream and its associated file, flushing
any buffered data to the device or file.

define schema !flush
 post ?;

Flushes any buffered data to the device or file.

define ghost function gStreamData: seq of byte
  ^= ?;

define schema !write(b: byte, ret!: out FileError)
 post ?;

Writes a byte to the file or device.

schema !write(s: seq of byte, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream.

schema !write(i: int, numBytes: nat, ret!: out
FileError)
 pre isOpen,
    numBytes ~= 0
 post ?;

Inherited from class OutputStream.

schema !write(c: char, encoder: from
CharEncoder, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream.

schema !write(r: real, ret!: out FileError)
 pre isOpen
 post ?;

Inherited from class OutputStream.

Storable

deferred class Storable
This is the implicit ancestor of any class declared
storable.

Methods

final schema store(env!: limited Environment, fref:
from OutputStream, version: nat)
 post ?;

Stores the object to the stream.
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string

class string ^= seq of char

Time

final class Time ^= storable Represents a date and time.

Data

var seconds: nat in 0..59,
  minutes: nat in 0..59,
  hours: nat in 0..23,
  day: nat in 0..6,
  date: nat in 1..31,
  month: nat in 1..12,
  year: nat;
function seconds, minutes, hours, day, date, month,
year;

Day 0 is Sunday, month 1 is January, and the year
is AD.

Constructors

build {!seconds, !minutes, !hours, !day, !date,
!month, !year: nat}
 pre seconds in 0..59,
    minutes in 0..59,
    hours in 0..23,
    day in 0..6,
    date in 1..31,
    month in 1..12;

Methods

total operator ~~(rhs)
  ^= ( let yearRank ^= year ~~ rhs.year;
        [yearRank = rank same]:
          ( let monthRank ^= month ~~ rhs.month;
            [monthRank = rank same]:
              ( let dateRank ^= date ~~ rhs.date;
                [dateRank = rank same]:
                  ( let dayRank ^= day ~~ rhs.day;
                    [dayRank = rank same]:
                      ( let hourRank ^= hours ~~ rhs.hours;
                        [hourRank = rank same]:

Later dates/times rank above earlier ones.
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                          ( let minuteRank ^= minutes ~~
rhs.minutes;
                            [minuteRank = rank same]:
                              seconds ~~ rhs.seconds,
                            []:
                              minuteRank
                          ),
                        []:
                          hourRank
                      ),
                    []:
                      dayRank
                  ),
                []:
                  dateRank
              ),
            []:
              monthRank
          ),
        []:
          yearRank
      );

redefine function toString: string
  ^= ?
assert result ~= "";

This is a simple definition of toString for diagnostic
purposes. In an application, you will need to define
a text representation that takes account of the local
conventions for printing days, dates and times.

triple of (X, Y, Z)

final class triple of (X, Y, Z) ^= storable

Data

var x: X, y: Y, z: Z;
selector x, y, z;

Constructors

build {!x: X, !y: Y, !z: Z};

Methods

operator ~~(a)
  ^= ( let t1 ^= x ~~ a.x;
        [t1 = rank same ]:
          ( let t2 ^= y ~~ a.y;
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            [t2 = rank same]:
              z ~~ a.z,
            []:
              t2
          ),
        []:
          t1
      );

redefine function toString: string
  ^= ?
 assert result ~= "";

void

final class void ^= storable
The void type has a single value denoted by the
literal null. It has no constructors.

Methods

redefine function toString: string
  ^= "null";
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Appendix B: LALR (1) Grammar

B1. Introduction

In the following grammar, keywords are display in bold. Other terminal symbols have UPPERCASE names
and the following meanings:

ARROW ->  or  <-  or  <->

DBLCOLON ::

DEFAS ^=

DEFINEorREDEFINE define or redefine

DOTDOTDOT ...

EMPTYSTRINGLITERAL The empty string literal, i.e. ""

IDENTIFIER An identifier

ITorSELF it or self

LITERAL A character, integer or real literal token, or one of false null true

NONEMPTYSTRINGLITERAL Any string literal except the empty string literal

NOT ~

OP0 ==>  or  <==  or  <==>

OP3 <=  or  <<=  or  >=  or  >>=  or  <<  or  >>

OP3M <  or  >

OP4 ++  or  --

OP4M +  or  -

OP5 **  or  %%  or  ##

OP5M *  or  %  or  /  or  #

OP6 ..

OP6M ^

OPAND &

OPEQUAL =

OPOR |

OPPROPERTY associative, commutative or idempotent
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OPRANK ~~

PREDEFCLASS bag, map, seq or set

PREDEFTYPE bool, byte, char, int, rank, real or void

SUCHTHAT :-

THATorANY that or any

TYPEOP lowest or highest

UNITE ||

The symbol 'Empty' means the empty string and the symbol 'EndOfFile' means the end of the source text.
Comments are italicised.

B2. Grammar

Goal:
    OptImportList GeneralDeclarations OptSEMI EndOfFile.

----------------------- Import lists -----------------------

OptImportList:
    Empty;
    OptImportList ImportItemList ';'.

ImportItemList:
 import ImportName;

    ImportItemList ',' ImportName.

ImportName:
    NONEMPTYSTRINGLITERAL.

----------------- Declarations and declaration lists ----------------

- The following declarations can all occur after nonmember or in a global or local declaration list
FunctionEtcDeclaration:
    FunctionDeclaration;
    SchemaDeclaration.

- The following can all occur as class members
MemberFunctionEtcDeclaration:

 early PlainMemberFunctionEtcDeclaration;
 final PlainMemberFunctionEtcDeclaration;

    PlainMemberFunctionEtcDeclaration.

PlainMemberFunctionEtcDeclaration:
    FunctionDeclaration;
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    SelectorDeclaration;
    MemberOperatorDeclaration;
    SchemaDeclaration;
    ModifyingSchemaDeclaration.

TheoremOrAxiomDeclaration:
    TheoremDeclaration;
    AxiomDeclaration.

NonmemberFunctionEtcDeclaration:
 nonmember FunctionEtcDeclaration.

NonmemberTheoremOrAxiomDeclaration:
 nonmember TheoremOrAxiomDeclaration.

ModifiedMemberFunctionEtcDeclaration:
    DEFINEorREDEFINE MemberFunctionEtcDeclaration;
    MemberFunctionEtcDeclaration.

- Deferred function and schema declarations are allowed together (i.e. only in class non-internal member
sections)
DeferredDeclaration:

 deferred FunctionHeader OptRequire OptPrecondition OptRecursionVariant OptPostAssertion;
 deferred SelectorHeader OptRequire OptPrecondition OptRecursionVariant OptPostAssertion;
 deferred MemberOperatorHeader ':' TypeExpression OptRequire OpProperties OptPrecondition

OptRecursionVariant OptPostAssertion;
 deferred SchemaHeader OptRequire OptPrecondition OptRecursionVariant OptPostAssertion;
 deferred ModifyingSchemaHeader OptRequire OptPrecondition OptRecursionVariant OptPostAssertion.

MemberFSOSPrototype:
    FunctionPrototype;
    SelectorPrototype;
    OperatorPrototype;
    SchemaPrototype.

AbsurdDeclaration:
    AbsurdFunctionDeclaration;
    AbsurdSelectorDeclaration;
    AbsurdOperatorDeclaration;
    AbsurdSchemaDeclaration.

- A general declaration may occur at the global level of the program
GeneralDeclaration:
    ConstantDeclarations;
    FunctionEtcDeclaration;
    TheoremOrAxiomDeclaration;
    ClassOrTypeDeclaration;
    HeapDeclarations.
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- A local declaration may not include constant declarations. We treat variable and let-declarations
separately.
LocalDeclaration:
    FunctionEtcDeclaration;
    TheoremOrAxiomDeclaration;
    ClassOrTypeDeclaration.

- Now for an abstract member declaration. We allow nonmember declarations
AbstractMemberDeclaration:
    ConstantDeclarations;
    AbstractVariableDeclarations;
    MemberFunctionEtcDeclaration;
    TheoremOrAxiomDeclaration;
    ModifyingTheoremDeclaration;
    NonmemberFunctionEtcDeclaration;
    NonmemberTheoremOrAxiomDeclaration;
    ConstructorDeclaration;
    ClassOrTypeDeclaration;
    HeapDeclarations;
    ClassInvariant;
    HistoryInvariant.

HeapDeclarations:
 heap IdentifierOptPragmaList.

- Internal members may be anything which may be a general declaration, or a redeclaration of an abstract
member
InternalMemberDeclaration:
    ConstantDeclarations;
    VariableDeclarations;
    MemberFunctionEtcDeclaration;
    TheoremOrAxiomDeclaration;
    ModifyingTheoremDeclaration;
    NonmemberFunctionEtcDeclaration;
    NonmemberTheoremOrAxiomDeclaration;
    ConstructorDeclaration;
    ClassOrTypeDeclaration;
    HeapDeclarations;
    ClassInvariant;
    InternalRedeclaration.

InternalRedeclaration:
    - Redeclarations of abstract variables as internal functions

 function SimpIdentifier DEFAS Expression OptImplementation;
    - Reimplementations of other abstract members

 function SimpIdentifier OptParmList Implementation;
    MemberOperatorHeader2 Implementation;
    EqualityOperatorHeader Implementation;
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 selector SimpIdentifier OptParmList Implementation;
 selector IndexOp OptParmList Implementation;
 schema SimpIdentifier OptSchemaParmList Implementation;

    ModifyingSchemaHeader2 Implementation;
 schema '!' RedefinableOp OperatorParam Implementation;
 build '{' OptConstructorParams '}' Implementation.

ClassParameterList:
    SimpIdentifier;
    ClassParameterList Separator SimpIdentifier.

TwoOrMoreSimpIdentifiers:
    SimpIdentifier ',' SimpIdentifier;
    TwoOrMoreSimpIdentifiers ',' SimpIdentifier.

SimpIdentifierList:
    SimpIdentifier;
    TwoOrMoreSimpIdentifiers.

- Interface members may not be variables, constants, classes, types or templates but may be redeclarations of
abstract members
InterfaceOrConfinedDeclaration:
    ModifiedMemberFunctionEtcDeclaration;
    TheoremOrAxiomDeclaration;
    ModifyingTheoremDeclaration;
    NonmemberFunctionEtcDeclaration;
    NonmemberTheoremOrAxiomDeclaration;
    ConstructorDeclaration;
    DeferredDeclaration;
    AbsurdDeclaration;
    InterfaceRedeclarations.

InterfaceRedeclarations:
 function SimpIdentifierList;
 ghost function SimpIdentifierList;
 selector SimpIdentifierList;
 ghost selector SimpIdentifierList.

----------------------- Declaration lists ------------------------

GeneralDeclarations:
    GeneralDeclaration;
    GeneralDeclarationWithPragma;
    GeneralDeclarations ';' GeneralDeclaration;
    GeneralDeclarations ';' GeneralDeclarationWithPragma.

GeneralDeclarationWithPragma:
    Pragma ';' GeneralDeclaration.
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----------------------- Forms of declaration ----------------------

ConstantDeclarations:
    const ConstDeclList;
    ghost const ConstDeclList.

ConstDeclList:
    ConstDeclItem;
    ConstDeclList ',' ConstDeclItem.

ConstDeclItem:
    IdentifierOptPragma ':' TypeExpression DEFAS Expression OptNvImplementation;
    IdentifierOptPragma DEFAS Expression OptNvImplementation.

VariableDeclarations:
 var DataDeclarationList.

AbstractVariableDeclarations:
    VariableDeclarations;
    ghost VariableDeclarations.

DataDeclarationList:
    DataDeclarations;
    DataDeclarationList ',' DataDeclarations.

DataDeclarations:
    TwoOrMoreIdentifiersOptPragma ':' PossConstrainedTypeExpression;
    IdentifierOptPragma ':' PossConstrainedTypeExpression;
    IdentifierOptPragma ':' AbbrevTypeExpr;

 when GuardedDataDeclarationList end.

TwoOrMoreIdentifiersOptPragma:
    IdentifierOptPragma ',' IdentifierOptPragma;
    TwoOrMoreIdentifiersOptPragma ',' IdentifierOptPragma.

GuardedDataDeclarationList:
    '[' Expression ']' ':' DataDeclarationList;
    '[' Expression ']' ':' DataDeclarationList ',' GuardedDataDeclarationList.

- Function and schema declarations

FunctionDeclaration:
    FunctionHeader OptExceptionSignature OptRequire OptPrecondition OptRecursionVariant FunctionBody.

FunctionHeader:
    FunctionHeader2;

 opaque FunctionHeader2;
 ghost FunctionHeader2.
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FunctionHeader2:
 function SimpIdentifier OptParmList FunctionType;
 function IdWithPragma OptParmList FunctionType.

FunctionBody:
    DEFAS PossiblyMultipleExpression OptImplementation OptPostAssertion;

 satisfy ListOfPredicates OptImplementation OptPostAssertion.

FunctionPrototype:
    FunctionHeader OptExceptionSignature OptRequire OptPrecondition OptPostAssertion.

AbsurdFunctionDeclaration:
 absurd FunctionHeader.

SelectorDeclaration:
    SelectorHeader OptExceptionSignature OptRequire OptPrecondition OptRecursionVariant DEFAS
Expression OptImplementation OptPostAssertion.

SelectorHeader:
    SelectorHeader2;

 opaque SelectorHeader2;
 ghost SelectorHeader2.

SelectorHeader2:
 selector SimpIdentifier OptParmList ':' TypeExpression;
 selector SimpIdentifier OptParmList ':' limited TypeExpression;
 selector IdWithPragma OptParmList ':' TypeExpression;
 selector IdWithPragma OptParmList ':' limited TypeExpression;
 selector IndexOp OptParmList ':' TypeExpression;
 selector IndexOp OptParmList ':' limited TypeExpression;
 selector IndexOpWithPragma OptParmList ':' TypeExpression;
 selector IndexOpWithPragma OptParmList ':' limited TypeExpression.

SelectorPrototype:
    SelectorHeader OptExceptionSignature OptRequire OptPrecondition OptPostAssertion.

AbsurdSelectorDeclaration:
 absurd SelectorHeader.

MemberOperatorDeclaration:
    MemberOperatorHeader ':' TypeExpression OptExceptionSignature OptRequire OpProperties
OptPrecondition OptRecursionVariant OperatorBody.

EqualityOrRankDeclaration:
    GhostEqualityOperatorHeader;
    EqualityOperatorHeader;
    RankOperatorHeader OptRecursionVariant OperatorBody.
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OperatorBody:
    DEFAS Expression OptImplementation OptPostAssertion;

 satisfy ListOfPredicates OptImplementation OptPostAssertion.

OperatorPrototype:
    MemberOperatorHeader ':' TypeExpression OptExceptionSignature OptRequire OptPrecondition
OptPostAssertion.

EqualityOrRankPrototype:
    EqualityOperatorHeader;
    RankOperatorHeader.

AbsurdOperatorDeclaration:
 absurd MemberOperatorHeader ':' TypeExpression.

MemberOperatorHeader:
    MemberOperatorHeader2;

 opaque MemberOperatorHeader2;
 ghost MemberOperatorHeader2.

MemberOperatorHeader2:
    LeftOperatorHeader;
    RightOperatorHeader;
    NeitherOperatorHeader.

LeftOperatorHeader:
 operator OperatorParam RevRedefinableOp;
 operator OperatorParam RevRedefinableOpWithPragma

RightOperatorHeader:
 operator RedefinableOp OperatorParam;
 operator RedefinableOpWithPragma OperatorParam.

EqualityOperatorHeader:
 operator OPEQUAL TypelessOperatorParam.

GhostEqualityOperatorHeader:
 ghost EqualityOperatorHeader.

RankOperatorHeader:
    RankOperatorHeader2;

 total RankOperatorHeader2.

RankOperatorHeader2:
 operator OPRANK TypelessOperatorParam.

NeitherOperatorHeader:
 operator RedefinableOp;
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 operator RedefinableOpWithPragma.

OpProperties:
    SimpleOpProperties;
    SimpleOpProperties identity Expression.

SimpleOpProperties:
    SimpleOpProperties OPPROPERTY;
    Empty.

Precondition:
 pre ListOfPredicates.

OptPrecondition:
    Precondition;
    Empty.

OptParmList:
    '(' FormalParams ')';
    Empty.

FormalParams:
    FormalParameterList;
    RepeatedParams;
    FormalParameterList Separator RepeatedParams.

RepeatedParams:
 repeated FormalParameterList.

FormalParameterList:
    ParameterDeclarations;
    FormalParameterList Separator ParameterDeclarations.

Separator:
    ',';
    ARROW.

OperatorParam:
    '(' SingleParm ')'.

TypelessOperatorParam:
    '(' IdentifierOptPragma ')'.

ParameterDeclarations:
    SingleParm;
    TwoOrMoreParameters ':' ParameterType.
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SingleParm:
    IdentifierOptPragma ':' ParameterType.

TwoOrMoreParameters:
    IdentifierOptPragma Separator ParameterNameList.

ParameterNameList:
    IdentifierOptPragma;
    ParameterNameList Separator IdentifierOptPragma.

ModifyingSchemaDeclaration:
    ModifyingSchemaHeader OptExceptionSignature OptRequire OptPrecondition OptRecursionVariant post
Postcondition OptImplementation OptPostAssertion.

SchemaDeclaration:
    SchemaHeader OptExceptionSignature OptRequire OptPrecondition OptRecursionVariant post
Postcondition OptImplementation OptPostAssertion.

SchemaPrototype:
    SchemaHeader OptExceptionSignature OptRequire OptPrecondition OptPostAssertion;
    ModifyingSchemaHeader OptExceptionSignature OptRequire OptPrecondition OptPostAssertion.

AbsurdSchemaDeclaration:
 absurd SchemaHeader;
 absurd ModifyingSchemaHeader.

SchemaHeader:
    schema SchemaHead;
    OpaqueOrGhost schema SchemaHead.

ModifyingSchemaHeader:
    ModifyingSchemaHeader2;
    OpaqueOrGhost ModifyingSchemaHeader2.

ModifyingSchemaHeader2:
 schema '!' SchemaHead.

SchemaHead:
    SimpIdentifier OptSchemaParmList;
    IdWithPragma OptSchemaParmList.

OptSchemaParmList:
    '(' SchemaParams ')';
    Empty.

SchemaParams:
    SchemaParameterList;
    RepeatedParams;
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    SchemaParameterList Separator RepeatedParams.

SchemaParameterList:
    SchemaParameterDeclarations;
    SchemaParameterList Separator SchemaParameterDeclarations.

SchemaParameterDeclarations:
    DecoratedIdentifierOptPragma ':' ParameterType;
    DecoratedIdentifierOptPragma ':' limited ParameterType;
    DecoratedIdentifierOptPragma ':' out ParameterType;
    TwoOrMoreSchemaParameters ':' ParameterType;
    TwoOrMoreSchemaParameters ':' limited ParameterType;
    TwoOrMoreSchemaParameters ':' out ParameterType.

TwoOrMoreSchemaParameters:
    DecoratedIdentifierOptPragma Separator DecoratedIdentifierOptPragma;
    TwoOrMoreSchemaParameters Separator DecoratedIdentifierOptPragma.

DecoratedIdentifierOptPragma:
    IdentifierOptPragma;
    IdentifierOptPragma '!'.

- Theorem and axiom declarations
TheoremDeclaration:

 property OptIdentifier OptSchemaParmList OptPrecondition GeneralAssertion;
 property OptIdentifier OptSchemaParmList OptPrecondition post Postcondition GeneralAssertion.

ModifyingTheoremDeclaration:
    '!' property OptIdentifier OptSchemaParmList OptPrecondition post Postcondition GeneralAssertion.

- An axiom declaration is like a theorem declaration but cannot have a proof
AxiomDeclaration:

 axiom OptIdentifier OptParmList OptPrecondition AssertionWithoutProof.

OptIdentifier:
    SimpIdentifier;
    Empty.

Postcondition:
    Postcondition0;
    '?'.

Postcondition0:
    PostconditionList;

 change Expr8pList satisfy ListOfPredicates.

PostconditionList:
    PostconditionList ',' PostconditionElement;
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    PostconditionElement.

PostconditionElement:
 forall BoundVariableDeclarations SUCHTHAT PostconditionElement;

    PostconditionElem0.

PostconditionElem0:
    PostconditionElem0 then PostconditionElem1;
    PostconditionElem1.

PostconditionElem1:
    PostconditionElem1 OPAND PostconditionElem2;
    PostconditionElem2.

PostconditionElem2:
    Expr8lp '!' OPEQUAL Expr3to4;
    Expr8lp '!' AssignableOp Expr3to4;
    Expr8lp '!' BoolAssignableOp Expr3to4;
    '(' InBracketsPostconditionElem ')';
    SchemaCall;

 pass.

SchemaCall:
    - Schema calls that modify the current object

 '!' IdOrMember SchemaActualParameterList;
    '!' IdOrMember OptActualParameterList;
    Expr8lp '!' IdOrMember SchemaActualParameterList;
    Expr8lp '!' IdOrMember OptActualParameterList;
    - Schema calls that do not modify the current object

 Expr8np '.' IdOrMember SchemaActualParameterList;
    Expr8lp '.' IdOrMember SchemaActualParameterList;
    GeneralIdOrMember SchemaActualParameterList.

InBracketsPostconditionElem:
    LetDeclAssertionList InBracketsPostconditionElem2;
    InBracketsPostconditionElem2.

InBracketsPostconditionElem2:
    LocalVarDecls ';' InBracketsPostconditionElem;
    Postcondition0;
    GuardedPostconditionElements.

GuardedPostconditionElements:
    GuardedPostconditionElemsNoElse;

 opaque GuardedPostconditionElemsNoElse;
    GuardedElemsComma EmptyGuard PostconditionList;
    GuardedElemsComma NullGuard.
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GuardedPostconditionElemsNoElse:
    '[' Expression ']' ':' PostconditionList;
    GuardedElemsComma '[' Expression ']' ':' PostconditionList.

GuardedElemsComma:
    '[' Expression ']' ':' PostconditionList ',';
    GuardedElemsComma '[' Expression ']' ':' PostconditionList ','.

Expr8pList:
    Expr8pNotCall;
    FuncOrSelecCall;
    Expr8pList ',' Expr8pNotCall;
    Expr8pList ',' FuncOrSelecCall.

FuncOrSelecCall:
    Expr8lp '.' IdOrMember OptActualParameterList;
    GeneralIdOrMember OptActualParameterList.

GeneralAssertion:
    AssertionWithoutProof;
    AssertionWithoutProof proof ProofList end;
    AssertionWithoutProof proof ProofListSEMI end.

AssertionWithoutProof:
 assert ListOfPredicates.

OptPostAssertion:
    GeneralAssertion;
    AssertionWithInherit;
    AssertionWithInherit proof ProofList end;
    AssertionWithInherit proof ProofListSEMI end;
    Empty.

AssertionWithInherit:
 assert DOTDOTDOT ',' ListOfPredicates;
 assert DOTDOTDOT.

ProofList:
    SimpleProofList;
    ConditionalProof.

ConditionalProof:
 if ConditionalProofList fi;
 if ConditionalProofListSEMI fi;

    SimpleProofListSEMI if ConditionalProofList fi;
    SimpleProofListSEMI if ConditionalProofListSEMI fi.
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ProofListSEMI:
    SimpleProofListSEMI;
    ConditionalProof ';'.

SimpleProofList:
    ProofItem;
    SimpleProofListSEMI ProofItem.

SimpleProofListSEMI:
    SimpleProofList ';'.

ProofItem:
    LetDeclaration;
    AssertionStatement.

ConditionalProofList:
    GuardedProofList;
    ConditionalProofListSEMI GuardedProofList.

ConditionalProofListSEMI:
    GuardedProofListSEMI;
    ConditionalProofListSEMI GuardedProofListSEMI.

GuardedProofList:
    '[' Expression ']' ':' ProofList.

GuardedProofListSEMI:
    '[' Expression ']' ':' ProofListSEMI.

------------------ Class and type declarations -------------------

ClassOrTypeDeclaration:
    ClassDeclName DEFAS tag;
    ClassDeclName DEFAS tag '(' Expression ')';
    ClassDeclName DEFAS EnumDefinition;
    PossiblyFinalClassDeclaration;
    ClassDeclName OptClassParamsDefas PossConstrainedTypeExpression.

PossiblyFinalClassDeclaration:
    final ClassDeclaration;
    deferred ClassDeclaration;
    ClassDeclaration.

ClassDeclaration:
    ClassDeclName OptClassParamsDefas ClassBody.

ClassDeclName:
 class IdentifierOptPragma.
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OptClassParamsDefas:
 of '(' ClassParameterList ')' OptRequire DEFAS;
 of SimpIdentifier OptRequire DEFAS;

    DEFAS.

ClassBody:
    ClassBody2;

 storable ClassBody2;
 inherits ClassName ClassBody2.

ClassBody2:
    AbstractDeclarations OptInternalDeclarations OptConfinedDeclarations OptInterfaceDeclarations end;
    ConfinedDeclarations OptInterfaceDeclarations end;
    InterfaceDeclarations end.

EnumDefinition:
 enum IdentifierOptPragmaList OptCOMMA end.

IdentifierOptPragmaList:
    IdentifierOptPragma;
    IdentifierOptPragmaList ',' IdentifierOptPragma.

AbstractDeclarations:
 abstract AbstractMemberDeclarations OptSEMI;
 abstract .

AbstractMemberDeclarations:
    AbstractMemberDeclaration;
    AbstractMemberDeclarations ';' AbstractMemberDeclaration.

OptCOMMA:
    ',';
    Empty.

ClassInvariant:
 invariant ListOfPredicates.

HistoryInvariant:
    '!' invariant ListOfPredicates OptExempt.

OptExempt:
 exempt SimpIdentifierList;

    Empty.

OptInternalDeclarations:
 internal InternalDeclarations OptSEMI;
 internal ;

    Empty.
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InternalDeclarations:
    InternalMemberDeclaration;
    InternalDeclarations ';' InternalMemberDeclaration.

InterfaceDeclarations:
 interface InterfaceDecls OptSEMI;
 interface.

OptInterfaceDeclarations:
    InterfaceDeclarations;
    Empty.

ConfinedDeclarations:
 confined ConfinedDecls OptSEMI;
 confined.

OptConfinedDeclarations:
    ConfinedDeclarations;
    Empty.

InterfaceDecls:
    InterfaceOrConfinedDeclaration;
    EqualityOrRankDeclaration;
    InterfaceDecls ';' InterfaceOrConfinedDeclaration;
    InterfaceDecls ';' EqualityOrRankDeclaration.

ConfinedDecls:
    InterfaceOrConfinedDeclaration;
    ConfinedDecls ';' InterfaceOrConfinedDeclaration.

ExpressionList:
    Expression;
    ExpressionList ',' Expression.

ListOfPredicates:
    ExpressionList.

ConstructorDeclaration:
    ConstrDecl2;
    OpaqueOrGhost ConstrDecl2.

ConstrDecl2:
 build '{' OptConstructorParams '}' OptExceptionSignature OptRequire OptPrecondition

OptRecursionVariant OptConstructorBody;
 build Pragma '{' OptConstructorParams '}' OptExceptionSignature OptRequire OptPrecondition

OptRecursionVariant OptConstructorBody.
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ConstructorPrototype:
    '{' OptConstructorParams '}' OptExceptionSignature OptRequire OptPrecondition OptPostAssertion.

OptConstructorParams:
    ConstructorParameterList;
    RepeatedParams;
    ConstructorParameterList Separator RepeatedParams;
    Empty.

ConstructorParameterList:
    ConstructorParams;
    ConstructorParameterList Separator ConstructorParams.

- Note that constructor parameters cannot be polymorphic.
ConstructorParams:
    ParamOptDecBang ':' TypeExpression;
    TwoOrMoreConstructorParameters ':' TypeExpression.

ParamOptDecBang:
    IdentifierOptPragma;
    '!' SimpIdentifier.

TwoOrMoreConstructorParameters:
    ParamOptDecBang Separator ParamOptDecBang;
    TwoOrMoreConstructorParameters Separator ParamOptDecBang.

OptConstructorBody:
    DEFAS Expression OptImplementation OptPostAssertion;

 inherits Expression OptConstructorPostcondition OptPostAssertion;
    OptConstructorPostcondition OptPostAssertion.

OptConstructorPostcondition:
    post Postcondition OptImplementation;
    Empty.

----------------------- 'require' parts ----------------------

OptRequire:
 require RequirementList;

    Empty.

RequirementList:
    RequirementItem;
    RequirementList ',' RequirementItem.

RequirementItem:
 identifier within TypeExpression;
 identifier has MemberDeclarationPrototypeList OptSEMI end.
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MemberDeclarationPrototypeList:
    MemberDeclarationPrototype;
    MemberDeclarationPrototypeList ';' MemberDeclarationPrototype.

MemberDeclarationPrototype:
    MemberFSOSPrototype;
    EqualityOrRankPrototype;
    ConstructorPrototype.

------------------- Exception signatures ------------------

OptExceptionSignature:
 throw TypeExpression;

    Empty.

----------------------- Expressions -----------------------

PossiblyMultipleExpression:
    Expression;
    TwoOrMoreExpressions.

TwoOrMoreExpressions:
    Expression ',' Expression;
    TwoOrMoreExpressions ',' Expression.

- Single expressions

Expression:
    PrimableExpression;
    UnprimableExpression.

UnprimableExpression:
    Expr0np;
    - The following types of expression involve constructs which span to the end of the expression and have to
be treated specially

 Expr3to4np ASorIS TypeExpression;
    Expr3to4np WithinOrNot TypeExpression;
    Expr8lp WithinOrNot TypeExpression;
    Expr3to4 after PostconditionElement;
    THATorANY Expression;
    THATorANY BoundVariableDeclaration SUCHTHAT Expression;

 those BoundVariableDeclaration SUCHTHAT Expression;
 forall BoundVariableDeclarations SUCHTHAT Expression;
 exists BoundVariableDeclarations SUCHTHAT Expression;
 for those BoundVariableDeclaration SUCHTHAT Expression yield Expression;
 for BoundVariableDeclaration yield Expression.
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PrimableExpression:
    Expr8lp ASorIS TypeExpression;
    Expr8lp.

BoundVariableDeclaration:
    SimpIdentifier ':' TypeExpr2;
    SimpIdentifier DBLCOLON Expr4.

BoundVariableDeclarations:
    BoundVariableDecls;
    BoundVariableDeclarations ',' BoundVariableDecls.

BoundVariableDecls:
    SimpIdentifierList ':' TypeExpr2;
    SimpIdentifierList DBLCOLON Expr4.

Expr0np:
    Expr0 Op0 Expr1;             - Op0 are ==> <==> <==
    Expr1np.

Expr0:
    Expr0np;
    Expr8lp.

Expr1np:
    Expr1 Op1 Expr2;             - Op1 is |
    Expr2np.

Expr1:
    Expr1np;
    Expr8lp.

Expr2np:
    Expr2 Op2 Expr3;             - Op2 is &
    Expr3np.

Expr2:
    Expr2np;
    Expr8lp.

Expr3np:
    CompareList Expr3to4;
    Expr3to4np.

Expr3:
    Expr3np;
    Expr8lp.
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CompareList:
    Expr3to4np Op3;                 - Op3 are the comparisons and negated comparisons
    Expr8lp Op3;
    CompareList Expr3to4np Op3;
    CompareList Expr8lp Op3.

Expr3to4np:
    Expr3to4 OPRANK Expr4;
    Expr3to4 like Expr4;
    Expr3to4np NOT like Expr4;
    Expr8lp NOT like Expr4;
    Expr3to4np Op3to4 Expr4;       - Op3to4 are "in" and "~in"
    Expr8lp Op3to4 Expr4;
    Expr4np.

Expr3to4:
    Expr3to4np;
    Expr8lp.

Expr4np:
    Expr4 Op4 Expr5;             - Op4 are + - ++ --
    Expr5np.

Expr4:
    Expr4np;
    Expr8lp.

Expr5np:
    Expr5 Op5 Expr6;             - Op5 are * / % ** # %% ##
    Expr6np.

Expr5:
    Expr5np;
    Expr8lp.

Expr6np:
    Expr6 Op6 Expr7;             - OP6 are ^ and ..
    Expr7np.

Expr6:
    Expr6np;
    Expr8lp.

Expr7np:
    NOT Expr7;
    Monop Expr7;
    TYPEOP TypeName;
    OverOp over Expr7;
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    Expr8np.

Expr7:
    Expr7np;
    Expr8lp.

- Unprimable expressions
Expr8np:
    Expr8np IndexingExpression;
    Expr8np '.' value;
    Expr8p ''';                             - primed expression
    Expr8np '.' IdOrMember OptActualParameterList;

 ref Expression on IDENTIFIER;
 - Constructor calls

    ClassNameNotPoly '{' OptActConstructorParams '}';
 - Literals

    NONEMPTYSTRINGLITERAL;
    EMPTYSTRINGLITERAL;
    LITERAL;

 - Brackets
    '(' UnprimableInBracketsExpr ')';
    '(' LetDeclAssertionList UnprimableInBracketsExpr ')';

 - Allow '?' to represent an unfinished program
    '?'.

- Primable and limited-primable expressions
Expr8lp:
    Expr8pNotCall;

 - Function and selector calls (we can't tell which, so assume selector which is primable)
 - Also variables and member expressions

    FuncOrSelecCall;
 result;
 - Bracketed expressions are here because expressions of the form "(e is T)" may be primable

    '(' PrimableExpression ')';
    '(' LetDeclAssertionList PrimableExpression ')'.

- Fully Primable expressions
Expr8pNotCall:
    ITorSELF;
    Expr8lp '.' value;
    Expr8lp IndexingExpression.

IndexingExpression:
    '[' Expression ']'.

Expr8p:
    Expr8pNotCall;

 - Function and selector calls (we can't tell which, so assume selector which is primable)
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 - Also variables and member expressions
    FuncOrSelecCall.

IdOrMember:
    IDENTIFIER;

 super IDENTIFIER.

GeneralIdOrMember:
    IDENTIFIER;

 super IDENTIFIER;
    IDENTIFIER '@' ClassName;     - deprecated syntax
    ClassName IDENTIFIER.           - new syntax

OptActualParameterList:
    '(' ExpressionSepList ')';
    Empty.

OptActConstructorParams:
    ExpressionSepList;
    Empty.

ExpressionSepList:
    Expression;
    ExpressionSepList Separator Expression.

- A schema actual parameter list must have at least one "!" actual parameter in it
SchemaActualParameterList:
    '(' SchemaActualParameters ')';
    '(' ExpressionSepList Separator SchemaActualParameters ')'.

SchemaActualParameters:
    Expr8lp '!';
    SchemaActualParameters Separator Expression;
    SchemaActualParameters Separator Expr8lp '!'.

- Various forms of expressions in brackets
UnprimableInBracketsExpr:
    UnprimableExpression;
    TwoOrMoreExpressions;
    ChoicesWithElse;

 opaque ChoicesNoElse;
    ChoicesNoElse.

LetDeclAssertionList:
    LetDeclaration ';';
    AssertionStatement ';';
    TraceStatement ';';
    LetDeclAssertionList LetDeclaration ';';
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    LetDeclAssertionList AssertionStatement ';';
    LetDeclAssertionList TraceStatement ';'.

LetDeclaration:
 let IdentifierOptPragma DEFAS Expression OptNvImplementation.

AssertionStatement:
    GeneralAssertion.

TraceStatement:
 trace ExpressionSepList;
 trace '[' Expression ']' ':' ExpressionSepList.

ChoicesWithElse:
    ChoicesNoElse ',' EmptyGuard Expression.

ChoicesNoElse:
    Choice;
    ChoicesNoElse ',' Choice.

Choice:
    '[' Expression ']' ':' Expression.

EmptyGuard:
    '[' ']' ':'.

NullGuard:
    '[' ']'.

---------------------- Type expressions ---------------------

ParameterType:
    TypeExpression;
    TemplateParameter.

TemplateParameter:
 class SimpIdentifier.

FunctionType:
    FunctionTypeList;
    ':' TypeExpression.

FunctionTypeList:
    FunctionTypeElements;
    FunctionTypeList ',' FunctionTypeElements.

FunctionTypeElements:
    SimpIdentifierList ':' TypeExpression.
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ConstrainedTypeExpression:
 those IDENTIFIER':' TypeExpr2 SUCHTHAT Expression;

    TypeExpr3 Op3 Expr4;
    TypeExpr3 Op3to4 Expr4;
    BracketedConstrainedTypeExpr.

BracketedConstrainedTypeExpr:
    '(' ConstrainedTypeExpression ')'.

PossConstrainedTypeExpression:
    ConstrainedTypeExpression;
    TypeExpression.

TypeExpression:
    TypeExpression UNITE TypeExpr2;
    TypeExpr2.

TypeExpr2:
    RefClassName;
    TypeExpr2a.

TypeExpr2a:
    FromClassName;
    TypeExpr3.

TypeExpr3:
    ClassName;
    '(' TypeExpression ')'.

ClassName:
    IDENTIFIER of ClassNameParameters;
    PREDEFCLASS of ClassNameParameters;
    IDENTIFIER;
    PREDEFTYPE.

- Template type argument lists
ClassNameParameters:
    TemplateParameter;
    ClassNameAsTypeExpr;
    FromClassName;
    RefClassName;
    '(' TypeExpressionList ')'.

ClassNameAsTypeExpr:
    ClassName.

FromClassName:
 from ClassName.
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RefClassName:
 ref limited TypeExpr2a on IDENTIFIER;
 ref TypeExpr2a on IDENTIFIER.

- ClassNameNotPoly is used in the syntax for constructors.
ClassNameNotPoly:
    IDENTIFIER of ClassNameParameters;
    PREDEFCLASS of ClassNameParameters;
    TypeName.

TypeExpressionList:
    ParameterType;
    TypeExpressionList Separator ParameterType.

TypeName:
    IDENTIFIER;
    PREDEFTYPE.

- Abbreviated type expressions are permitted after ":" when declaring a single non-bound local variable
AbbrevTypeExpr:

 those TypeExpr2 SUCHTHAT Expression;
    AbbrevTypeExpr1.

AbbrevTypeExpr1:
    '(' AbbrevTypeExpr ')'.

--------------------- Implementations ----------------------

OptImplementation:
    Implementation;
    Empty.

Implementation:
 via OptImplVariantSemi ImplList OptSEMI end.

- Same as above but no variant permitted
OptNvImplementation:

 via ImplList OptSEMI end;
    Empty.

ImplList:
    ImplItem;
    LocalVarDecls;
    HeapDeclarations;
    ImplList ';' ImplItem;
    ImplList ';' LocalVarDecls;
    ImplList ';' HeapDeclarations.
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- Implementation items valid in both functions and schemas
ImplItem:

 begin ImplList OptSEMI end;
 par ImplList OptSEMI end;
 if Conditional fi;
 value PossiblyMultipleExpression;
 done;

    LocalDeclaration;
    LetDeclaration;
    TraceStatement;
    Postcondition OptNvImplementation;
    GeneralAssertion;
    IdentifierOptPragma ':' Precondition;

 goto IDENTIFIER;
 - A loop must either have a 'change' part, or some local variable declarations, otherwise it really can't do

anything.
 loop OptLocalVars change Expr8pList keep ListOfPredicates OptLoopUntil LoopVariant ';' ImplList

OptSEMI end;
 loop LocalVarDecls ';' keep ListOfPredicates OptLoopUntil LoopVariant ';' ImplList OptSEMI end;
 throw Expression;
 throw;
 try ImplList OptSEMI catch CatchList end.

LocalVarDecls:
 var LocalVarDeclGroup;

    LocalVarDecls ',' LocalVarDeclGroup.

LocalVarDeclGroup:
    SimpIdentifier ':' PossConstrainedTypeExpression;
    SimpIdentifier ':' TypeExpression '!' OPEQUAL Expression;
    SimpIdentifier ':' BracketedConstrainedTypeExpr '!' OPEQUAL Expression;
    SimpIdentifier ':' AbbrevTypeExpr;
    SimpIdentifier ':' AbbrevTypeExpr1 '!' OPEQUAL Expression;
    TwoOrMoreSimpIdentifiers ':' PossConstrainedTypeExpression.

OptLocalVars:
    LocalVarDecls ';';
    Empty.

OptLoopUntil:
 until ListOfPredicates;

    Empty.

Conditional:
    ConditionalNoElse;
    ConditionalNoElseSemi;
    ConditionalNoElseSemi EmptyGuard ImplList OptSEMI;
    ConditionalNoElseSemi NullGuard.
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ConditionalNoElse:
    GuardedImplList;
    ConditionalNoElseSemi GuardedImplList.

ConditionalNoElseSemi:
    GuardedImplList ';';
    ConditionalNoElseSemi GuardedImplList ';'.

GuardedImplList:
    '[' Expression ']' ':' ImplItem;
    '[' Expression ']' ':' LocalVarDecls;
    GuardedImplList ';' ImplItem;
    GuardedImplList ';' LocalVarDecls.

CatchList:
    CatchItem;
    CatchItem ';';
    CatchItem ';' CatchList.

CatchItem:
    '[' IdentifierOptPragma ':' TypeExpression ']' ':' ImplItem;
    '[' IdentifierOptPragma ':' TypeExpression ']' ':' LocalVarDecls;
    CatchItem ';' ImplItem;
    CatchItem ';' LocalVarDecls.

--------------------- Variants ---------------------

OptRecursionVariant:
    decrease ExpressionList;
    decrease DOTDOTDOT;
    decrease DOTDOTDOT ',' ExpressionList;
    Empty.

OptImplVariantSemi:
 decrease ExpressionList ';';

    Empty.

LoopVariant:
 decrease ExpressionList.

--------------------- Operators ---------------------

- Some operators can be both unary and binary. The following allows such operators to be both (e.g. OP3M
represents the operators ">" and "<").
- Also, all Op3 operators return Boolean results and can be prefixed by "~" to generate the inverse operator

Op0:
    OP0.
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Op1:
    OPOR.

Op2:
    OPAND.

Op3:
    PlainOp3;
    NOT PlainOp3.

PlainOp3:
    OP3;                     - binary only, <= <<= >= >>= << >>
    OPEQUAL;
    OP3M.                 - unary or binary, <  >

Op3to4:
 in;

    NOT in.

Op4:
    OP4;                      - binary only, ++ --
    OP4M.                   - unary or binary, + -

Op5:
    OP5;                    - binary only, **
    OP5M.                - unary or binary, * % /

Op6:
    OP6;
    OP6M.

Monop:
    OP3M;
    OP4M;
    OP5M;
    OP6M.

IndexOp:
    '[' ']'.

IndexOpWithPragma:
    IndexOp Pragma.

RedefinableOp:
    RevRedefinableOp;
    IndexOp.
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RedefinableOpWithPragma:
    RevRedefinableOpWithPragma;
    IndexOpWithPragma.

RevRedefinableOp:
    OP3;
    OP3M;
    OP4;
    OP4M;
    OP5;
    OP5M;
    OP6;
    OP6M;

 in.

RevRedefinableOpWithPragma:
    RevRedefinableOp Pragma.

- All bound binary operators except the comparisons can be used with "over"
OverOp:
    Op4;
    Op5;
    Op6.

- All binary operators except the comparisons can be used after "!"
AssignableOp:
    Op4;
    Op5;
    Op6.

- Boolean operators
BoolAssignableOp:
    Op0;
    Op1;
    Op2.

WithinOrNot:
 within;

    NOT within.

------------------- Miscellaneous ------------------

OpaqueOrGhost:
    opaque;
    ghost.

SimpIdentifier:
    IDENTIFIER.
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- When declaring most names, we allow the identifier to be modified by a pragma
IdentifierOptPragma:
    IDENTIFIER;
    IdWithPragma.

IdWithPragma:
    IDENTIFIER Pragma.

Pragma:
 pragma PragmaMapping.

PragmaMapping:
    '(' PragmaMapList ')'.

PragmaMapList:
    PragmaMapItem;
    PragmaMapList ',' PragmaMapItem.

PragmaMapItem:
    IDENTIFIER OPEQUAL NONEMPTYSTRINGLITERAL;
    IDENTIFIER OPEQUAL IDENTIFIER;
    IDENTIFIER OPEQUAL PragmaMapping.

OptSTRINGLITERAL:
    NONEMPTYSTRINGLITERAL;
    Empty.

OptSEMI:
    ';' ;
    Empty.

------------------ End of grammar -----------------
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