
Tony Mullins Griffith College Dublin 1

Lecture 4

Specifying with Sets

Tony Mullins Griffith College Dublin 2

Set Theory

Intuitively a set is an unordered collection
of elements that does not allow duplicates.

This means that two sets are equal if and
only if they contain the same elements.

Tony Mullins Griffith College Dublin 3

Set Theory
const s1 : set of int
 ^= set of int{1,2,3};
const s2 : set of int
 ^= set of int{3,2,1};
const s3 : set of int
 ^= set of int{1,2,3,2};
property assert s1 = s2;
property assert s1 = s3;

Tony Mullins Griffith College Dublin 4

Set Theory

Set Membership
 x in A returns true if x is an element of set A;

false otherwise

property assert 1 in set of int{1,2,3};
 property assert 4 ~in set of int{1,2,3};

Tony Mullins Griffith College Dublin 5

Empty set

The empty set is a set with no elements.
Denoted by {}

x in {} <==> false

The function a.empty returns true if a is
the empty set; false otherwise.

Tony Mullins Griffith College Dublin 6

Cardinality

The cardinality of a set is the number of
elements in the set. It is denoted by #s

property assert
#set of int{1,2,3} = #set of int{1,2,3,1};
#set of int{} = 0;

Tony Mullins Griffith College Dublin 7

Subset

A is a subset of B iff all elements in A are
contained in B. Denoted by <<=

 A <<= B <==> x in A => x in B

property assert
 set of int{1,2} <<= set of int{1,2,3};

Note: Proper subset denoted by A << B

Tony Mullins Griffith College Dublin 8

Intersection

A intersection B is the set of elements
common to both A and B. Denoted by **

A ** B <==> x in A & x in B

property assert
 set of int{1,3,5} ** set of int{1,5,7} = set of

int{1,5};

Tony Mullins Griffith College Dublin 9

Union

A union B is the set of elements contained
in A and B. Denoted by ++

A++B <==> x in A | x in B

 property assert
 set of int{1,3,5} ++ set of int{1,5,7} = set of

int{1,3,5,7};

Tony Mullins Griffith College Dublin 10

Set difference

 A -- B is the set of elements contained in A
that are not in B. Denoted by --

A -- B <==> x in A & x ~in B

 property assert
 set of int{1,3,5} -- set of int{1,5,7} = set of

int{3};

Tony Mullins Griffith College Dublin 11

append

The function append adds an element to an
existing set and returns a new set.

 function append(a:X):set of X
 satisfy result >>= self,
 forall x :: result :- x = a | x in self;

Example
 set of int{1,2,3}.append(4) =

set of int{1,2,3,4};

Tony Mullins Griffith College Dublin 12

remove

The function remove removes an element
from an existing set and returns a new set.
function remove(a: X): set of X

satisfy result <<= self,
 a ~in result,
 self = result | self = result.append(a);
Example

 set of int{1,2,3}.remove(3) = set of int{1,2};

Tony Mullins Griffith College Dublin 13

max

The function max returns the maximum
element from a given set.
function max: X

pre ~empty
satisfy result in self,
~(exists x::self :- (result ~~ x) =

below@rank);
Example

set of int{1,2,3,4}.max = 4;

Tony Mullins Griffith College Dublin 14

min

The function min returns the minimum
element from a given set.

function min: X
pre ~empty
satisfy result in self,
~(exists x::self :- (x ~~ result) =

below@rank);

Tony Mullins Griffith College Dublin 15

Properties of sets

{} <<= A Empty set is a subset of every set
A <<= A Every set is a subset of itself

A ** {} = {} A intersection empty set equals empty
 set

 A ** A = A A intersection A equals A

A ++ {} = A A union empty set equals A

A ++ A = A A union A equals A

A -- {} = A A take away empty set equals A

A -- A = {} A take away A equals empty set

Tony Mullins Griffith College Dublin 16

Properties of sets

Laws of Distribution
A ** (B ++ C) = (A ** B) ++ (A ** C)
A ++ (B ** C) = (A ++ B) ** (A ++ C)

Tony Mullins Griffith College Dublin 17

Universal Set

Universal Set
 If every set X under discussion is a sub-set of

some set U, then U is called the universal set.

Given a universal set U and a set A, such that
A<<=U, we define the complement of A as

 compA = U -- A

Tony Mullins Griffith College Dublin 18

Constructing large sets

In Perfect it is possible to list the elements in a set
as part of the constructor

 e.g. set of int{1,2,3,4,5,6,7,8};

But not possible to use shorthand notation.

To construct large sets use recursive definition

Tony Mullins Griffith College Dublin 19

Constructing large set of int

function setConstructor(n : nat) : set of int
 decrease n
 ^= ([n = 0]:
 set of int{},
 []:
 set of int{n} ++ setConstructor(n-1)
);

Tony Mullins Griffith College Dublin 20

Universal set
const U : set of int

 ^= setConstructor(50);

const D : set of int
 ^= those x :: U :- x % 2 = 0;

const E : set of int
 ^= those x :: U :- x % 2 ~= 0;

Tony Mullins Griffith College Dublin 21

Universal set

const compD : set of int
 ^= U -- D;

property assert forall x :: D :- x ~in E;
property assert D ** E = set of int{};
property assert D ++ compD = U;

Tony Mullins Griffith College Dublin 22

Sample problem

Specify a class called SetEx that has a
single set of integer values as attribute.

The data set must always contain at least
one non-negative value.

Tony Mullins Griffith College Dublin 23

Solution

class SetEx ^=
abstract
 var

data : set of int;
 invariant

 #data > 0 & (forall c :: data :- c >= 0);

Tony Mullins Griffith College Dublin 24

Constructor

build{}
post data! = set of int{1};

build{a : set of int}
 pre #a >0 & (forall x :: a :- x >= 0)
 post data! = a;

Tony Mullins Griffith College Dublin 25

Functions

function isElementOf(x : int) : bool
^= x in data;

function contains(a : set of int) : bool
^= a <<= data;

Tony Mullins Griffith College Dublin 26

Schemas

schema !insert(x : int)
 pre x >=0
 post data! = data.append(x);

schema !insertSet(a : set of int)
 pre (forall c :: a :- c >= 0)
 post data! = data ++ a;

Tony Mullins Griffith College Dublin 27

Schemas

schema !remove(x : int)
 pre isElementOf(x) & #data > 1
 post data! = data.remove(x);

schema !removeSet(a : set of int)
 pre #a < #data
 post data! = data -- a;

Tony Mullins Griffith College Dublin 28

Simple Resource Manager

Specify a resource manager that allocates a
pool of resources to users. When a user is
allocated a resource it is no longer available
until it is freed by the user. When this
happens it is put back in the pool of
available resources.
A resource might be a hotel room, a car, a
printer, etc.

Tony Mullins Griffith College Dublin 29

Simple Resource Manager

class Resource ^=
 abstract
 var
 id : string;
 interface
 function id;
 build{!id:string};
 end;

Tony Mullins Griffith College Dublin 30

Simple Resource Manager

class ResourceManager ^=
abstract
 var
 resources : set of Resource,
 available : set of Resource,
 allocated : set of Resource;

Tony Mullins Griffith College Dublin 31

Simple Resource Manager

invariant
 available <<= resources,
 allocated <<= resources,
 available ++ allocated = resources,
 available ** allocated = set of Resource{};

Tony Mullins Griffith College Dublin 32

Simple Resource Manager

build{}
 post
 resources! = set of Resource{},
 available! = set of Resource{},
 allocated! = set of Resource{};

Tony Mullins Griffith College Dublin 33

Simple Resource Manager

 function resources;

function allocated;

function available;

function checkAvailable(r : Resource):bool
 ^= r in available;

Tony Mullins Griffith College Dublin 34

Simple Resource Manager

schema !add(r : Resource)
 pre r ~in resources
 post

resources! = resources.append(r),
 available! = available.append(r);

Tony Mullins Griffith College Dublin 35

Simple Resource Manager

schema !allocate(r : Resource)
 pre r in available
 post
 allocated! = allocated. append(r),

available! = available.remove(r),
 resources! = resources;

Tony Mullins Griffith College Dublin 36

Simple Resource Manager

schema !free(r : Resource)
 pre r in allocated
 post
 allocated! = allocated -- set of Resource{r},
 available! = available ++ set of Resource{r};

Tony Mullins Griffith College Dublin 37

Simple Resource Manager

Allocate r followed by free r leaves state space
unchanged
ghost schema !requestReturn(r:Resource)

 pre r in available
 post
 !allocate(r) then !free(r)
 assert
 available' = available,
 allocated' = allocated;

	Lecture 4
	Set Theory
	Set Theory
	Set Theory
	Empty set
	Cardinality
	Subset
	Intersection
	Union
	Set difference
	append
	remove
	max
	min
	Properties of sets
	Properties of sets
	Universal Set
	Constructing large sets
	Constructing large set of int
	Universal set
	Universal set
	Sample problem
	Solution
	Constructor
	Functions
	Schemas
	Schemas
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager
	Simple Resource Manager

