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Lecture 4

Specifying with Sets



Tony Mullins Griffith College Dublin 2

Set Theory

Intuitively a set is an unordered collection
of elements that does not allow duplicates.

This means that two sets are equal if and
only if they contain the same elements.
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Set Theory
const s1 : set of int
 ^= set of int{1,2,3};
const s2 : set of int
 ^= set of int{3,2,1};
const s3 : set of int
 ^= set of int{1,2,3,2};
property assert s1 = s2;
property assert s1 = s3;
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Set Theory

Set Membership
    x in A returns true if x is an element of set A;

false otherwise

property assert 1 in set of int{1,2,3};
   property assert 4 ~in set of int{1,2,3};
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Empty set

The empty set is a set with no elements.
Denoted by {}

x in {} <==> false

The function a.empty returns true if a is
the empty set; false otherwise.
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Cardinality

The cardinality of a set is the number of
elements in the set. It is denoted by #s

property assert
#set of int{1,2,3} = #set of int{1,2,3,1};
#set of int{} = 0;
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Subset

A is a subset of B iff all elements in A are
contained in B. Denoted by <<=

   A <<= B <==> x in A => x in B

property assert
  set of int{1,2} <<= set of int{1,2,3};

Note: Proper subset denoted by A << B
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Intersection

A intersection B is the set of elements
common to both A and B. Denoted by **

A ** B <==> x in A & x in B

property assert
  set of int{1,3,5} ** set of int{1,5,7} = set of

int{1,5};
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Union

A union B is the set of elements contained
in  A and B. Denoted by ++

A++B <==> x in A | x in B

  property assert
  set of int{1,3,5} ++ set of int{1,5,7} = set of

int{1,3,5,7};
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Set difference

   A -- B is the set of elements contained in  A
that are not in B. Denoted by --

A -- B <==> x in A & x ~in B

  property assert
   set of int{1,3,5} -- set of int{1,5,7} = set of

int{3};
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append

The function append adds an element to an
existing set and returns a new set.

    function append(a:X):set of X
      satisfy result >>= self,
                 forall x :: result :- x = a | x in self;

Example
      set of int{1,2,3}.append(4) =

set of   int{1,2,3,4};



Tony Mullins Griffith College Dublin 12

remove

The function remove removes an element
from an existing set and returns a new set.
function remove(a: X): set of X

satisfy result <<= self,
      a ~in result,
      self = result | self = result.append(a);
Example

   set of int{1,2,3}.remove(3) = set of int{1,2};



Tony Mullins Griffith College Dublin 13

max

The function max returns the maximum
element from a given set.
function max: X

pre ~empty
satisfy result in self,
~(exists x::self :- (result ~~ x) = 

below@rank);
Example

set of int{1,2,3,4}.max = 4;
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min

The function min returns the minimum
element from a given set.

function min: X
pre ~empty
satisfy result in self,
~(exists x::self :- (x ~~ result) = 

below@rank);
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Properties of sets

{} <<= A Empty set is a subset of every set 
A <<= A  Every set is a subset of itself

A ** {} = {} A intersection empty set equals empty
 set

     A ** A = A  A intersection A equals A

A ++ {} = A A union empty set equals A

A ++ A = A A union A equals A

A -- {} = A A  take away empty set equals A

A -- A = {}  A  take away A equals empty set
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Properties of sets

Laws of Distribution
A ** (B ++ C) = (A ** B) ++ (A ** C)
A ++ (B ** C) = (A ++ B) ** (A ++ C)
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Universal Set

Universal Set
    If every set X under discussion is a sub-set of

some set U, then U is called the universal set.

Given a universal set U and a set A, such that
A<<=U, we define the complement of A as

 compA = U -- A
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Constructing large sets

In Perfect it is possible to list the elements in a set
as part of the constructor

  e.g. set of int{1,2,3,4,5,6,7,8};
 

But not possible to use shorthand notation.

To construct large sets use recursive definition
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Constructing large set of int

function setConstructor(n : nat) : set of int
  decrease n
  ^= ([n = 0]:
       set of int{},
      []:
       set of int{n} ++ setConstructor(n-1)
      );
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Universal set
const U : set of int

 ^= setConstructor(50);

const D : set of int
  ^= those x :: U :- x % 2 = 0;

const E : set of int
  ^= those x :: U :- x % 2 ~= 0;
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Universal set

const compD : set of int
  ^= U -- D;

property assert forall x :: D :- x ~in E;
property assert D ** E = set of int{};
property assert D ++ compD = U;
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Sample problem

Specify a class called SetEx that has a
single set of integer values as attribute.

The data set must always contain at least
one non-negative value.
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Solution

class SetEx ^=
abstract
   var

data : set of int;
   invariant

    #data > 0  & (forall c :: data :- c >= 0);
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Constructor

build{}
post data! = set of int{1};

build{a : set of int}
 pre #a >0 & (forall x :: a :- x >= 0)
 post data! = a;
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Functions

function isElementOf(x : int) : bool
^= x in data;

function contains(a : set of int) : bool
^= a <<= data;
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Schemas

schema !insert(x : int)
 pre x >=0
 post data! = data.append(x);

schema !insertSet(a : set of int)
  pre (forall c :: a :- c >= 0)
  post data! = data ++ a;
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Schemas

schema !remove(x : int)
   pre isElementOf(x) & #data > 1
   post data! = data.remove(x);

schema !removeSet(a : set of int)
  pre #a < #data
  post data! = data -- a;
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Simple Resource Manager

Specify a resource manager that allocates a
pool of resources to users. When a user is
allocated a resource it is no longer available
until it is freed by the user. When this
happens it is put back in the pool of
available resources.
A resource might be a hotel room, a car, a
printer, etc.
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Simple Resource Manager

class Resource ^=
 abstract
   var
     id : string;
 interface
   function id;
   build{!id:string};
 end;
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Simple Resource Manager

class ResourceManager ^=
abstract
 var
  resources : set of Resource,
  available : set of Resource,
  allocated : set of Resource;
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Simple Resource Manager

invariant
   available <<= resources,
   allocated <<= resources,
   available ++ allocated = resources,
   available ** allocated = set of Resource{};
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Simple Resource Manager

build{}
 post
     resources! = set of Resource{},
     available! = set of Resource{},
     allocated! = set of Resource{};
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Simple Resource Manager

  function resources;

function allocated;

function available;

function checkAvailable(r : Resource):bool
    ^= r in available;
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Simple Resource Manager

schema !add(r : Resource)
   pre r ~in resources
   post

resources! = resources.append(r),
        available! = available.append(r);



Tony Mullins Griffith College Dublin 35

Simple Resource Manager

schema !allocate(r : Resource)
    pre r in available
    post
        allocated! = allocated. append(r),

available! = available.remove(r),
        resources! = resources;
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Simple Resource Manager

schema !free(r : Resource)
    pre r in allocated
    post
        allocated! = allocated -- set of Resource{r},
        available! = available ++ set of Resource{r};
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Simple Resource Manager

Allocate r followed by free r leaves state space
unchanged
ghost schema !requestReturn(r:Resource)

     pre r in available
     post
       !allocate(r) then !free(r)
     assert
       available' = available,
       allocated' = allocated;
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