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Couples, Relations and Functions

Lecture 7
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Couples
A couple is a pair of values. Couples are enclosed
by round brackets and separated by a comma.
Examples are, (1,2), (a,b), (John, Mary).

Constructor:
   pair of (type, type){..}

pair of (int,int){a,b};
   pair of (Person, Person){p1,p2};
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Couples

Selector
Given p : pair of (X,Y){a,b}
p.x = a and p.y = b
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Couples
const p1 : pair of(int,int)

 ^= pair of (int,int){5,6};
const p2 : pair of(int,int)

 ^= pair of (int,int){5,6};
 const p3 : pair of(int,int)
 ^= pair of (int,int){3,6};
 const p4 : pair of(int,int)
 ^= pair of (int,int){3,7};



Tony Mullins Griffith College Dublin 5

Couples

property assert p1 = p2;
property assert p1 ~~ p2 = same@rank;
property assert ~(p1 < p3);
property assert p3 < p4;
property assert p1.x = p2.x & p1.y = p2.y;
property assert p1.x > p3.x;
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for .. yield
for id :: collection yield expression
for those id :: collection :- predicate yield
expression

The collection must be a set, bag or sequence and
the result is a set, bag or sequence whose type is
the same as the expression. In the second form
only those values that satisfy the predicate are
chosen.
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for..yield
Example

Given a set s = {1,2,3,4,5,6,7}

for x :: s yield 2*x

returns the set {2,4,6,8,10,12,14}

   for those x :: s :- x%2 = 0 yield 2*x
   returns the set {4,8,12}
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for .. yield
Question 2 Worksheet 5

Calculate total occupancy in hotel could be written
as follows:

function totalOccupancy : nat
 pre exists r :: rooms :- r.numOccupants > 0
 ^= + over(for x :: rooms yield 

x.numOccupants);
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Relations
A relation is a set of couples.

A = {(1,2), (1,3), (2,4),(2,6), (3,5)}
B = {(John, Mary), (Donal,Pat)}

Domain of A
    {1,2,3}
Range of A
    {2,3,4,6,5}
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Relations
Constructor
    set of pair of (type,type){..}
   set of pair of(int,int){..}

  Given Point ^= pair of (int, int);
set of Point;
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Relations
Example
   Specify a class called IntRelation that models a

relation of int couples. The class should have
functions that retrieve the domain, range, and
cardinality of the relation. Functions to check if a
given couple is an element of the relation and
check if a given set of couples are contained in the
relation should be given. The class should also
have functions that specify domain subtraction,
domain restriction and range subtraction and
restriction.
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Relations
class IntRelation ^=
abstract

var
 data : set of pair of (int,int);

interface
..
build{}

post  data! = set of pair of (int,int){};
 build{f : set of pair of (int,int)}
      post  data! = f;
end;



Tony Mullins Griffith College Dublin 13

Relations

The domain is the set of x ordinates
function dom : set of int
 ^= for a :: data yield a.x;

The range is the set of y ordinates
function ran : set of int
 ^= for a :: data yield a.y;
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Relations
Given f : IntRelation such that
  data = {(1,2),(3,5),(3,6),(5,7)}

f.dom = set of int{1,3,5}
f.ran =  set of int{2,5,6,7}

Cardinality is given by
function size : nat  ^= #data;

f.size = 4
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Relations
isElement returns true if a,b is an element of
the relation; false otherwise
function isElement(a :int,b:int): bool
  ^= pair of(int,int){a,b} in data;

contains returns true if f is a sub set of the
relation; false otherwise
function contains(f : set of pair of(int,int)):
bool
 ^= f <<= data;
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Relations
Given a relation r and a set s, domain restriction
equals the set of couples t such that
forall c :: t :- c.x in s

function domRestrict(s : set of int) :
  set of pair of (int,int)

 ^= those  c :: data :- c.x in s;
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Relations

Given f : IntRelation such that
  data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{1,5}

f.domRestrict(s) = {(1,2),(5,7)}
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Relations

Given a relation r and a set s, range restriction
equals the set of couples t such that
forall c :: t :- c.y in s

function ranRestrict(s : set of int) : set of
pair of (int,int)
 ^= those  c :: data :- c.y in s;
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Relations

Given f : IntRelation such that
  data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{2,5}

f.ranRestrict(s) = {(1,2),(3,5),(6,2)}
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Relations

Given a relation r and a set s, domain subtraction
equals the set of couples t such that
forall c :: t :- c.x ~in s

function domSubtract(s : set of int) : set
of pair of (int,int)
 ^= those  c :: data :- c.x ~in s;
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Relations

Given f : IntRelation such that
  data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{1,3}

f.domSubtract(s) = {(5,7),(6,2)}
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Relations
Given a relation r and a set s, range subtraction
equals the set of couples t such that
forall c :: t :- c.y ~in s

function ranSubtract(s : set of int) : set of
pair of (int,int)
 ^= those  c :: data :- c.y ~in s;
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Relations

Given f : IntRelation such that
  data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{2,5}

f.ranSubtract(s) = {(3,6),(5,7)}
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Relations
Schemas to add a new couple and a set of couples.

schema !add(a :int, b:int)
 post
  data! = data.append(pair of (int,int){a,b});

schema !add(f : set of pair of (int,int))
  post
    data! = data ++ f;
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Relations
Schemas to remove a set of couples and remove a
set of domain values.

schema !remove(f : set of pair of (int,int))
 post
   data! = data -- f;

schema !removeFromDomain(s : set of int)
 post
   data! = data -- domSubtract(s);
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Relations
Schema to remove a set of values from the range.

schema !removeFromRange(s : set of int)
 post
   data! = data -- ranSubtract(s);
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YearGroup
A class of students can take any
combination of the followng subjects:
English, Maths, History, French, German.
There are no restrictions on the number of
subjects each student can take and there is
no limit to the class size.
Specify a class called YearGroup that
models students and the subjects they are
studying.
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YearGroup

class Student ^= string;

class Subject ^= enum English, Maths,
History, French, German end;

Studies is a couple mapping a student to a subject
class Studies ^= pair of(Student,Subject);
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YearGroup
class YearGroup ^=
abstract

var
     // data is a relation

 data : set of Studies;
interface
..
build{}

post ?;
end;
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YearGroup
The list of students in the year is given by:

function students : set of Student
     ^= for s :: data yield s.x;

The list of subjects currently being taken by
students is given by:
function subjects : set of Subject

     ^= for sub :: data yield sub.y;
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YearGroup
List the subjects taken by a given student.

function getSubjects(st : Student): set of
Subject
 pre st in students
 ^= (for those s :: data :- s.x = st yield s.y );
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YearGroup
List students taking a particular subject

function listSubject(sub : Subject) : set of
Student
 ^= (for those s :: data :- s.y = sub yield 

  s.x);
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YearGroup
Add a student together with a single subject

schema !add(st : Student, sub : Subject)
 post
  data! = data ++ set of Studies{pair of 

(Student,Subject){st,sub}};
Alternative post
   data! = data.append(pair of (Student,

Subject) {st,sub});
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YearGroup
Add a student together with a list of subjects

schema !add(st:Student, sub : set of
Subject)
  post
    data! = data ++ (for x :: sub yield pair of
(Student,Subject){st,x});
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Functions
A function is a relation where each element in the
domain has at most one image in the range

R1 = {(1,2),(2,3),(4,5),(5,6)}
R2 = {(1,2),(1,3),(2,3),(4,5)}
R3 = {(1,2),(2,2),(3,2),(4,2)}

R1 and R3 are functions but R2 violates the rule
because it contains the couples (1,2) and (1,3)
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Functions
Functions are modelled in Perfect by the map
class

Constructors
map of (X->Y){..}
map of (int->int){1->2, 3->5}
map of (string->string){"pat"->"teacher"}
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Functions
build{p: set of pair of (X,Y)}
  pre forall x, y::p :- x = y | x.x ~= y.x
  post ?
  assert self'.pairs = p;

build{a: seq of pair of (X,Y)}
  pre forall x, y::a :- x = y | x.x ~= y.x
  post ?
  assert self'.pairs = a.ran;
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Functions
Functions and Schemas

# returns cardinality of the set of couples

A++B, where A and B of type map, returns the
union of both maps

A -- B, where A of type map and B a set, returns
those couples in A that are not contained in B.

A ** B, where A of type map and B a set, returns
those couples in A that are contained in B
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Functions
x in A returns true if x is an element of the
domain of A; otherwise false

operator (a: X) in : bool
  ^= exists x :: pairs :- x.x = a;

A.pairs returns the set of couples in A
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Functions
A.dom returns the set of domain elements in A

   A.ran returns the set of range elements in A,
duplicates removed

   A.ranb returns the bag of range elements in A

A.empty returns true if A is the empty map;
false otherwise
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Functions
A.append(b), where A of type map and b : pair
of (X,Y), returns a map with couple b appended
to A

function append(a: pair of (X,Y)): map of
(X->Y)
  pre a.x in self ==> a.y = self[a.x]
  ^= map of (X->Y){pairs.append(a)};
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Functions
function append(a:X->b:Y):

map of (X->Y)
  pre a.x in self ==> a.y = self[a.x]
  ^= map of (X->Y){pairs.append(a)};

Note the pre-condition in both functions
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Functions
function remove(a: X): map of (X->Y)
  ^= map of(X->Y){those x::pairs :-x.x ~= a};

selector [](a: X): Y
  pre a in dom
  ^= ?
  assert result = (that x::pairs :- x.x = a).y;
The selector means that it is possible to reference a
range value using the domain value as an index
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Functions
It is also possible to use indexing to modify an
element of a mapping. For example, given a map
A of integer couples such that

 A = {1->2,3->5}, then

A[3]! = 7,

gives the map {1->2, 3->7}
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MapTest
class MapTest ^=
abstract

var
data : map of (int->int);

interface
..
build{}

post data! = map of (int->int){1->2,3->5};
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MapTest
build{a : set of pair of (int,int)}

    pre forall x::a :-
forall y::a :- (y = x) | ~(y.x = x.x)

    post data! = map of (int->int){a};
end;
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MapTest
function dom : set of int
 ^= data.dom;

function ranb : bag of int
 ^= data.ranb;

function isElement(a : int, b : int) : bool
 ^= exists c :: data.pairs :- c.x = a & c.y = b;
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MapTest
function domRestrict(s : set of int) : set of
pair of (int,int)
 ^= those c :: data.pairs :- c.x in s;

function domainRestrict(s : set of int) :
map of (int->int)
 ^= data ** s;
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MapTest
function domSubtract(s : set of int) :
 map of (int->int)
 ^= data -- s;

schema !add(a : int, b : int)
 pre a in data.dom ==> b = data[a]
 post
   data! = data.append(a->b);
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MapTest
schema !remove(a : set of int)
   post
     data! = data -- a;

schema !remove(a : int)
 post
  data! = data.remove(a);
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Books Example
Specify a simple database of books where each
book has an associated unique key. A book has a
single attribute title.
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Books Example
class Book ^=
abstract

var
 title : string;
 invariant #title > 0;

interface
function title;
build{t : string}
    pre #t > 0
    post title! = t;

end;
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Books Example
class Key ^=
abstract

var key : string;
invariant #key > 0;

interface
function key;
build{a : string}
    pre #a > 0

post key! = a;
end;
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Books Example
import "Book.pd", "Key.pd";
class Books ^=
abstract

var
 data : map of (Key->Book);

interface
function data;
function keys : set of Key
 ^= data.dom;
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Books Example
function books : bag of Book
 ^= data.ranb;

function empty : bool
 ^= data.empty;

schema !add(k:Key,b:Book)
 pre k ~in data.dom
 post data! = data.append(k->b);
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Books Example
schema !delBook(k:Key)
 pre k in data.dom
 post data! = data.remove(k);

build{}
post data! = map of (Key->Book){};
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Books Example
property (a: Key, b:Book)
    pre a ~in data.dom

assert ~(self after it!add(a,b)).empty;

ghost schema !addToEmptyThenRemove(a:
Key,b:Book)

pre empty, a ~in data.dom
post !add(a,b) then !delBook(a)
assert data'.empty;

end;
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