
Tony Mullins Griffith College Dublin 1

Couples, Relations and Functions

Lecture 7

Tony Mullins Griffith College Dublin 2

Couples
A couple is a pair of values. Couples are enclosed
by round brackets and separated by a comma.
Examples are, (1,2), (a,b), (John, Mary).

Constructor:
 pair of (type, type){..}

pair of (int,int){a,b};
 pair of (Person, Person){p1,p2};

Tony Mullins Griffith College Dublin 3

Couples

Selector
Given p : pair of (X,Y){a,b}
p.x = a and p.y = b

Tony Mullins Griffith College Dublin 4

Couples
const p1 : pair of(int,int)

 ^= pair of (int,int){5,6};
const p2 : pair of(int,int)

 ^= pair of (int,int){5,6};
 const p3 : pair of(int,int)
 ^= pair of (int,int){3,6};
 const p4 : pair of(int,int)
 ^= pair of (int,int){3,7};

Tony Mullins Griffith College Dublin 5

Couples

property assert p1 = p2;
property assert p1 ~~ p2 = same@rank;
property assert ~(p1 < p3);
property assert p3 < p4;
property assert p1.x = p2.x & p1.y = p2.y;
property assert p1.x > p3.x;

Tony Mullins Griffith College Dublin 6

for .. yield
for id :: collection yield expression
for those id :: collection :- predicate yield
expression

The collection must be a set, bag or sequence and
the result is a set, bag or sequence whose type is
the same as the expression. In the second form
only those values that satisfy the predicate are
chosen.

Tony Mullins Griffith College Dublin 7

for..yield
Example

Given a set s = {1,2,3,4,5,6,7}

for x :: s yield 2*x

returns the set {2,4,6,8,10,12,14}

 for those x :: s :- x%2 = 0 yield 2*x
 returns the set {4,8,12}

Tony Mullins Griffith College Dublin 8

for .. yield
Question 2 Worksheet 5

Calculate total occupancy in hotel could be written
as follows:

function totalOccupancy : nat
 pre exists r :: rooms :- r.numOccupants > 0
 ^= + over(for x :: rooms yield

x.numOccupants);

Tony Mullins Griffith College Dublin 9

Relations
A relation is a set of couples.

A = {(1,2), (1,3), (2,4),(2,6), (3,5)}
B = {(John, Mary), (Donal,Pat)}

Domain of A
 {1,2,3}
Range of A
 {2,3,4,6,5}

Tony Mullins Griffith College Dublin 10

Relations
Constructor
 set of pair of (type,type){..}
 set of pair of(int,int){..}

 Given Point ^= pair of (int, int);
set of Point;

Tony Mullins Griffith College Dublin 11

Relations
Example
 Specify a class called IntRelation that models a

relation of int couples. The class should have
functions that retrieve the domain, range, and
cardinality of the relation. Functions to check if a
given couple is an element of the relation and
check if a given set of couples are contained in the
relation should be given. The class should also
have functions that specify domain subtraction,
domain restriction and range subtraction and
restriction.

Tony Mullins Griffith College Dublin 12

Relations
class IntRelation ^=
abstract

var
 data : set of pair of (int,int);

interface
..
build{}

post data! = set of pair of (int,int){};
 build{f : set of pair of (int,int)}
 post data! = f;
end;

Tony Mullins Griffith College Dublin 13

Relations

The domain is the set of x ordinates
function dom : set of int
 ^= for a :: data yield a.x;

The range is the set of y ordinates
function ran : set of int
 ^= for a :: data yield a.y;

Tony Mullins Griffith College Dublin 14

Relations
Given f : IntRelation such that
 data = {(1,2),(3,5),(3,6),(5,7)}

f.dom = set of int{1,3,5}
f.ran = set of int{2,5,6,7}

Cardinality is given by
function size : nat ^= #data;

f.size = 4

Tony Mullins Griffith College Dublin 15

Relations
isElement returns true if a,b is an element of
the relation; false otherwise
function isElement(a :int,b:int): bool
 ^= pair of(int,int){a,b} in data;

contains returns true if f is a sub set of the
relation; false otherwise
function contains(f : set of pair of(int,int)):
bool
 ^= f <<= data;

Tony Mullins Griffith College Dublin 16

Relations
Given a relation r and a set s, domain restriction
equals the set of couples t such that
forall c :: t :- c.x in s

function domRestrict(s : set of int) :
 set of pair of (int,int)

 ^= those c :: data :- c.x in s;

Tony Mullins Griffith College Dublin 17

Relations

Given f : IntRelation such that
 data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{1,5}

f.domRestrict(s) = {(1,2),(5,7)}

Tony Mullins Griffith College Dublin 18

Relations

Given a relation r and a set s, range restriction
equals the set of couples t such that
forall c :: t :- c.y in s

function ranRestrict(s : set of int) : set of
pair of (int,int)
 ^= those c :: data :- c.y in s;

Tony Mullins Griffith College Dublin 19

Relations

Given f : IntRelation such that
 data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{2,5}

f.ranRestrict(s) = {(1,2),(3,5),(6,2)}

Tony Mullins Griffith College Dublin 20

Relations

Given a relation r and a set s, domain subtraction
equals the set of couples t such that
forall c :: t :- c.x ~in s

function domSubtract(s : set of int) : set
of pair of (int,int)
 ^= those c :: data :- c.x ~in s;

Tony Mullins Griffith College Dublin 21

Relations

Given f : IntRelation such that
 data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{1,3}

f.domSubtract(s) = {(5,7),(6,2)}

Tony Mullins Griffith College Dublin 22

Relations
Given a relation r and a set s, range subtraction
equals the set of couples t such that
forall c :: t :- c.y ~in s

function ranSubtract(s : set of int) : set of
pair of (int,int)
 ^= those c :: data :- c.y ~in s;

Tony Mullins Griffith College Dublin 23

Relations

Given f : IntRelation such that
 data = {(1,2),(3,5),(3,6),(5,7),(6,2)}

and s = set of int{2,5}

f.ranSubtract(s) = {(3,6),(5,7)}

Tony Mullins Griffith College Dublin 24

Relations
Schemas to add a new couple and a set of couples.

schema !add(a :int, b:int)
 post
 data! = data.append(pair of (int,int){a,b});

schema !add(f : set of pair of (int,int))
 post
 data! = data ++ f;

Tony Mullins Griffith College Dublin 25

Relations
Schemas to remove a set of couples and remove a
set of domain values.

schema !remove(f : set of pair of (int,int))
 post
 data! = data -- f;

schema !removeFromDomain(s : set of int)
 post
 data! = data -- domSubtract(s);

Tony Mullins Griffith College Dublin 26

Relations
Schema to remove a set of values from the range.

schema !removeFromRange(s : set of int)
 post
 data! = data -- ranSubtract(s);

Tony Mullins Griffith College Dublin 27

YearGroup
A class of students can take any
combination of the followng subjects:
English, Maths, History, French, German.
There are no restrictions on the number of
subjects each student can take and there is
no limit to the class size.
Specify a class called YearGroup that
models students and the subjects they are
studying.

Tony Mullins Griffith College Dublin 28

YearGroup

class Student ^= string;

class Subject ^= enum English, Maths,
History, French, German end;

Studies is a couple mapping a student to a subject
class Studies ^= pair of(Student,Subject);

Tony Mullins Griffith College Dublin 29

YearGroup
class YearGroup ^=
abstract

var
 // data is a relation

 data : set of Studies;
interface
..
build{}

post ?;
end;

Tony Mullins Griffith College Dublin 30

YearGroup
The list of students in the year is given by:

function students : set of Student
 ^= for s :: data yield s.x;

The list of subjects currently being taken by
students is given by:
function subjects : set of Subject

 ^= for sub :: data yield sub.y;

Tony Mullins Griffith College Dublin 31

YearGroup
List the subjects taken by a given student.

function getSubjects(st : Student): set of
Subject
 pre st in students
 ^= (for those s :: data :- s.x = st yield s.y);

Tony Mullins Griffith College Dublin 32

YearGroup
List students taking a particular subject

function listSubject(sub : Subject) : set of
Student
 ^= (for those s :: data :- s.y = sub yield

 s.x);

Tony Mullins Griffith College Dublin 33

YearGroup
Add a student together with a single subject

schema !add(st : Student, sub : Subject)
 post
 data! = data ++ set of Studies{pair of

(Student,Subject){st,sub}};
Alternative post
 data! = data.append(pair of (Student,

Subject) {st,sub});

Tony Mullins Griffith College Dublin 34

YearGroup
Add a student together with a list of subjects

schema !add(st:Student, sub : set of
Subject)
 post
 data! = data ++ (for x :: sub yield pair of
(Student,Subject){st,x});

Tony Mullins Griffith College Dublin 35

Functions
A function is a relation where each element in the
domain has at most one image in the range

R1 = {(1,2),(2,3),(4,5),(5,6)}
R2 = {(1,2),(1,3),(2,3),(4,5)}
R3 = {(1,2),(2,2),(3,2),(4,2)}

R1 and R3 are functions but R2 violates the rule
because it contains the couples (1,2) and (1,3)

Tony Mullins Griffith College Dublin 36

Functions
Functions are modelled in Perfect by the map
class

Constructors
map of (X->Y){..}
map of (int->int){1->2, 3->5}
map of (string->string){"pat"->"teacher"}

Tony Mullins Griffith College Dublin 37

Functions
build{p: set of pair of (X,Y)}
 pre forall x, y::p :- x = y | x.x ~= y.x
 post ?
 assert self'.pairs = p;

build{a: seq of pair of (X,Y)}
 pre forall x, y::a :- x = y | x.x ~= y.x
 post ?
 assert self'.pairs = a.ran;

Tony Mullins Griffith College Dublin 38

Functions
Functions and Schemas

returns cardinality of the set of couples

A++B, where A and B of type map, returns the
union of both maps

A -- B, where A of type map and B a set, returns
those couples in A that are not contained in B.

A ** B, where A of type map and B a set, returns
those couples in A that are contained in B

Tony Mullins Griffith College Dublin 39

Functions
x in A returns true if x is an element of the
domain of A; otherwise false

operator (a: X) in : bool
 ^= exists x :: pairs :- x.x = a;

A.pairs returns the set of couples in A

Tony Mullins Griffith College Dublin 40

Functions
A.dom returns the set of domain elements in A

 A.ran returns the set of range elements in A,
duplicates removed

 A.ranb returns the bag of range elements in A

A.empty returns true if A is the empty map;
false otherwise

Tony Mullins Griffith College Dublin 41

Functions
A.append(b), where A of type map and b : pair
of (X,Y), returns a map with couple b appended
to A

function append(a: pair of (X,Y)): map of
(X->Y)
 pre a.x in self ==> a.y = self[a.x]
 ^= map of (X->Y){pairs.append(a)};

Tony Mullins Griffith College Dublin 42

Functions
function append(a:X->b:Y):

map of (X->Y)
 pre a.x in self ==> a.y = self[a.x]
 ^= map of (X->Y){pairs.append(a)};

Note the pre-condition in both functions

Tony Mullins Griffith College Dublin 43

Functions
function remove(a: X): map of (X->Y)
 ^= map of(X->Y){those x::pairs :-x.x ~= a};

selector [](a: X): Y
 pre a in dom
 ^= ?
 assert result = (that x::pairs :- x.x = a).y;
The selector means that it is possible to reference a
range value using the domain value as an index

Tony Mullins Griffith College Dublin 44

Functions
It is also possible to use indexing to modify an
element of a mapping. For example, given a map
A of integer couples such that

 A = {1->2,3->5}, then

A[3]! = 7,

gives the map {1->2, 3->7}

Tony Mullins Griffith College Dublin 45

MapTest
class MapTest ^=
abstract

var
data : map of (int->int);

interface
..
build{}

post data! = map of (int->int){1->2,3->5};

Tony Mullins Griffith College Dublin 46

MapTest
build{a : set of pair of (int,int)}

 pre forall x::a :-
forall y::a :- (y = x) | ~(y.x = x.x)

 post data! = map of (int->int){a};
end;

Tony Mullins Griffith College Dublin 47

MapTest
function dom : set of int
 ^= data.dom;

function ranb : bag of int
 ^= data.ranb;

function isElement(a : int, b : int) : bool
 ^= exists c :: data.pairs :- c.x = a & c.y = b;

Tony Mullins Griffith College Dublin 48

MapTest
function domRestrict(s : set of int) : set of
pair of (int,int)
 ^= those c :: data.pairs :- c.x in s;

function domainRestrict(s : set of int) :
map of (int->int)
 ^= data ** s;

Tony Mullins Griffith College Dublin 49

MapTest
function domSubtract(s : set of int) :
 map of (int->int)
 ^= data -- s;

schema !add(a : int, b : int)
 pre a in data.dom ==> b = data[a]
 post
 data! = data.append(a->b);

Tony Mullins Griffith College Dublin 50

MapTest
schema !remove(a : set of int)
 post
 data! = data -- a;

schema !remove(a : int)
 post
 data! = data.remove(a);

Tony Mullins Griffith College Dublin 51

Books Example
Specify a simple database of books where each
book has an associated unique key. A book has a
single attribute title.

Tony Mullins Griffith College Dublin 52

Books Example
class Book ^=
abstract

var
 title : string;
 invariant #title > 0;

interface
function title;
build{t : string}
 pre #t > 0
 post title! = t;

end;

Tony Mullins Griffith College Dublin 53

Books Example
class Key ^=
abstract

var key : string;
invariant #key > 0;

interface
function key;
build{a : string}
 pre #a > 0

post key! = a;
end;

Tony Mullins Griffith College Dublin 54

Books Example
import "Book.pd", "Key.pd";
class Books ^=
abstract

var
 data : map of (Key->Book);

interface
function data;
function keys : set of Key
 ^= data.dom;

Tony Mullins Griffith College Dublin 55

Books Example
function books : bag of Book
 ^= data.ranb;

function empty : bool
 ^= data.empty;

schema !add(k:Key,b:Book)
 pre k ~in data.dom
 post data! = data.append(k->b);

Tony Mullins Griffith College Dublin 56

Books Example
schema !delBook(k:Key)
 pre k in data.dom
 post data! = data.remove(k);

build{}
post data! = map of (Key->Book){};

Tony Mullins Griffith College Dublin 57

Books Example
property (a: Key, b:Book)
 pre a ~in data.dom

assert ~(self after it!add(a,b)).empty;

ghost schema !addToEmptyThenRemove(a:
Key,b:Book)

pre empty, a ~in data.dom
post !add(a,b) then !delBook(a)
assert data'.empty;

end;

	Couples, Relations and Functions
	Couples
	Couples
	Couples
	Couples
	for .. yield
	for..yield
	for .. yield
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	Relations
	YearGroup
	YearGroup
	YearGroup
	YearGroup
	YearGroup
	YearGroup
	YearGroup
	YearGroup
	Functions
	Functions
	Functions
	Functions
	Functions
	Functions
	Functions
	Functions
	Functions
	Functions
	MapTest
	MapTest
	MapTest
	MapTest
	MapTest
	MapTest
	Books Example
	Books Example
	Books Example
	Books Example
	Books Example
	Books Example
	Books Example

