
Tony Mullins Griffith College Dublin 1

Lecture 3

User Defined Classes

Tony Mullins Griffith College Dublin 2

Class Definition
A class definition is an abstract data type. It
has two main sections.
!abstract section

• declare abstract variables
• class invariants

!interface section used to declare public:
• functions,
• schemas,
• operators
• constructors

Tony Mullins Griffith College Dublin 3

Class Template
class <name> ^=
abstract

 // Add variable, invariant and
 //private method declarations
interface

// public methods here
build{}

post ?;
end;

Tony Mullins Griffith College Dublin 4

Constructor
build{}

! The name of the constructor method
! Multiple constructors with different parameter

lists are allowed

post ?;
! Describes the condition that must be satisfied

after the constructor is invoked.

Tony Mullins Griffith College Dublin 5

Class Counter
class Counter ^=
 abstract

 var count : int;
interface
 function getCount : int
 ^= count;

 function count;
build{}

post count! = 0;
end;

Tony Mullins Griffith College Dublin 6

Constructor
• The postcondition in the constructor build

states that the attribute count changes such
that its final value is 0.

• Also possible to write the constructor with
an argument

build{x : int}
post count! = x;

Tony Mullins Griffith College Dublin 7

Symbol !
• The symbol ! after a name indicates that a

change of value occurs
• It can also be used as a prefix to the name of

an abstract variable in the constructor.
build{!count}

Tony Mullins Griffith College Dublin 8

Creating a Counter
• To create a Counter use the expression

Counter{}
or

Counter{5}

• Outside the class declaration add the
definition
const c1 ^= Counter{};

Tony Mullins Griffith College Dublin 9

Functions
• Functions

!return information about the abstract variables
in a class

!Cannot change the values of abstract variables

• Abstract variables can be re-declared as
functions in the interface section. They
provide read-only access.
!Use this approach as opposed to method

getCount

Tony Mullins Griffith College Dublin 10

Schemas
A schema is a method that can change one
or more abstract variables in a class.
A schema is declared as follows:

 schema !<name>
 post ?;

schema !<name>(param_list)
 post ?;

Tony Mullins Griffith College Dublin 11

Schemas

For example,

schema !inc
 post count! = count + 1;

schema !inc(x:int)
 post count! = count + x;

Tony Mullins Griffith College Dublin 12

Schemas
 post ?;

Describes the condition that must be satisfied
after the schema is invoked.

Given an instance c1 of type Counter to
invoke the schema inc use:

c1!inc
c1!inc(5)

Tony Mullins Griffith College Dublin 13

Class Invariants
A class invariant is a constraint that must be
true for every instance of the class. It is a
global constraint on the values of abstract
variables.
In the Counter class we might want to
impose a lower bound.

abstract
 var count : int;

 invariant count >= 0;

Tony Mullins Griffith College Dublin 14

Class Invariants

The invariant is a global constraint and will
have consequences when writing methods
that change the values of abstract variables.

The verifier has to be able to prove that all
change methods satisfy the global invariant.

Tony Mullins Griffith College Dublin 15

class Counter ^=
abstract

var count : int;
invariant count >= 0;

interface
schema !inc
 post count! = count + 1;
schema !inc(x : int)
 post count! = count + x;
build{}

post count! = 0;
build {x : int}
 post count! = x;

end;

Tony Mullins Griffith College Dublin 16

Verifier Report
Counter.pd
(14,12): Information! Confirmed: Class invariant satisfied
(17,11): Warning! Unable to prove: Class invariant satisfied
 ..cannot prove: 0 <= self'.count.
(20,12): Information! Confirmed: Class invariant satisfied
(24,14): Information! Confirmed: Class invariant satisfied
(27,11): Warning! Unable to prove: Class invariant satisfied
Generating verification output files ... 0 seconds
0% of capacity used
0 errors, 2 warnings found.
PD: Job completed but warnings were detected!

Tony Mullins Griffith College Dublin 17

Verifier Report
The causes of the warnings were:

schema !inc(x : int)
 post count! = count + x;

build {x : int}
 post count! = x;

Tony Mullins Griffith College Dublin 18

Preconditions

 The problems can be solved by adding a
precondition that restricts the values of the
parameter x.

The keyword pre followed by one or more
comma separated Boolean expressions is
used to denote preconditions.

Tony Mullins Griffith College Dublin 19

Preconditions
Preconditions represent conditions that must
be satisfied when a

schema,
constructor, or
function

is invoked

Tony Mullins Griffith College Dublin 20

Adding preconditions to Counter

schema !inc(x : int)
 pre x >= 0
 post count! = count + x;

build {x : int}
 pre x >= 0
 post count! = x;

Tony Mullins Griffith College Dublin 21

class Counter ^=
abstract
 var count : int;
 invariant count >= 0;
interface
 schema !inc
 post count! = count + 1;
 schema !inc(x : int)
 pre x >= 0
 post count! = count + x;
 function getCount : int
 ^= count;
 redefine function toString : string
 ^= "Counter: " ++ count.toString;
 build{}
 post count! = 0;
 build {x : int}
 pre x >= 0
 post count! = x;
end;

Tony Mullins Griffith College Dublin 22

toString function
Inherited by all classes from root class
anything
Must be redefined in user-defined classes
to use it
Example,

 redefine function toString : string
 ^= "Counter: " ++ count.toString;

Tony Mullins Griffith College Dublin 23

Combining Postconditions
Postconditions can be combined using:

!conjunction(&)
swap x, y <==> x! = y & y! = x
note: satisfied in parallel

!schema composition(sequence)
denoted by key word then

!conditional expression
allows choice in postcondition

Tony Mullins Griffith College Dublin 24

Primed Abstract Variables

A primed variable refers to the final value
of a variable after a change event. Primed
variables may be used in postconditions and
in post assertions. For example,

count’ refers to the final value of count after
dec or inc schemas,

 or
 x! = e & y = x’ <==> x! = e & y = e

Tony Mullins Griffith College Dublin 25

Meaning of Postconditions in Schemas

The meaning of the post condition is
defined by

change var-list satisfy condition

where each var in var-list must appear primed in
condition

Tony Mullins Griffith College Dublin 26

Meaning of Postconditions in Schemas

By this definition

count! = count + 1
<==>
change count satisfy count’ = count + 1

Tony Mullins Griffith College Dublin 27

Equality

Two instances of the Counter class c1, c2
can be compared for equality of content
using the equals operator (=).

c1 = c2 is defined over equality of
attributes for all instances of the class

Tony Mullins Griffith College Dublin 28

Comparison
To impose an ordering on instances of the
Counter class we must specify a meaning
for the comparison operator ~~

operator ~~(other)
 ^= count ~~ other.count;

Note: ~~ between instances of the int class is
already defined.

Tony Mullins Griffith College Dublin 29

Comparison Test
const c1 : Counter
 ^= Counter{5};
const c2: Counter
 ^= Counter{5};
const c3 : Counter
 ^= Counter{4};
property assert c1 ~~ c2 = same@rank;
property assert c3~~c2 = below@rank;

Tony Mullins Griffith College Dublin 30

Post Assertions
A post assertion is a boolean expression that
must be satisfied after a change operation
on the state of the class.
After !inc the value of count must be greater than
0.
This constraint can be inserted as a post assertion on
schema inc as follows:

schema !inc
 post count! = count + 1
 assert count' > 0;

Tony Mullins Griffith College Dublin 31

Post Assertions

A post assertion for !dec might be:

schema !dec
 pre count > 0
 post count! = count -1
 assert count' >= 0;

Tony Mullins Griffith College Dublin 32

Properties of a class

Properties are used to verify expected
behaviours of all instances of a class.
Properties can be expressed by using the
 property assert clause

or by writing
 ghost schemas

Note: A ghost schema is one for which no code is
generated.

Tony Mullins Griffith College Dublin 33

Properties of Counter class
The value of the abstract variable count
after !inc is greater than 0

 property
 assert (self after it!inc).count > 0;

Tony Mullins Griffith College Dublin 34

Properties of Counter class
The value of count is unchanged when !inc
is followed by !dec

ghost schema !addDec
 post !inc then !dec
 assert count' = count;

Tony Mullins Griffith College Dublin 35

Properties of Counter class

!inc followed by !inc gives a final value of
count greater than 1

ghost schema !incInc
 post !inc then !inc
 assert count' > 1;

Tony Mullins Griffith College Dublin 36

Complete Counter class
class Counter ^=
abstract

var count : int;
invariant count >= 0;

interface
schema !inc
 post count! = count + 1
 assert count' > 0;
schema !inc(x : int)
 pre x >= 0
 post count! = count + x
 assert count' >= 0;

Tony Mullins Griffith College Dublin 37

Complete Counter class
 schema !dec

 pre count > 0
 post count! = count -1
 assert count' >= 0;

function count;

 redefine function toString : string
 ^= "Counter: " ++ count.toString;
operator ~~(other)
 ^= count ~~ other.count;

Tony Mullins Griffith College Dublin 38

Complete Counter class
 build{}

post count! = 0;
build {x : int}
 pre x >= 0
 post count! = x;

 property
 assert (self after it!inc).count > 0;

Tony Mullins Griffith College Dublin 39

Complete Counter class

 ghost schema !addDec
 post !inc then !dec
 assert count' = count;
 ghost schema !incInc
 post !inc then !inc
 assert count' > 1;

 end;

Tony Mullins Griffith College Dublin 40

Cursor Control
A computer terminal has fixed dimensions given by the
number of lines and columns in the display. It also has a
cursor that indicates the current position of the typeface in
the display. The movement of this cursor is restricted to the
limits of the dimensions of the terminal. The movement of
the cursor is controlled by the following list of public
methods:
 home

set cursor to top left hand corner
 return

generates a carriage return and linefeed when cursor is not currently at
the bottom of the terminal: otherwise a carriage return

Tony Mullins Griffith College Dublin 41

Cursor Control
down

generates a linefeed when cursor not on bottom row; otherwise cursor
wraps to top of terminal

up
cursor moves up one row when not at top row; otherwise wraps to
bottom row

left
 cursor moves left one position when not at leftmost column; otherwise

wraps to end of line
right

cursor moves right one position when not at rightmost column;
otherwise wraps to start of line

Tony Mullins Griffith College Dublin 42

Terminal class

class Terminal ^=
abstract

var
 line : nat,
 column : nat,
 numCols : nat,
 numLines : nat;

 invariant
 (1 <= line <=numLines) & (1 <= column <= numCols);

Tony Mullins Griffith College Dublin 43

Terminal class

 Constructor

build{lines : nat, cols : nat}
 pre cols > 1 & lines >= 1
 post line! = 1, column! = 1,

 numCols! = cols,
 numLines! = lines;

Tony Mullins Griffith College Dublin 44

Interface section

schema !home
 post line! = 1, column! = 1;

Tony Mullins Griffith College Dublin 45

Interface section
schema !return

 post
 ([line < numLines]:
 line! = line + 1,
 []:
 line! = line
)
 &
 (column! = 1);

Tony Mullins Griffith College Dublin 46

Interface section
schema !down
 post

 ([line < numLines]:
 line! = line + 1,
 []:
 line! = 1
)
 &
 (column! = column);

Tony Mullins Griffith College Dublin 47

Interface section
schema !left

post
 ([column > 1]:
 column! = column - 1,
 []:
 column! = numCols
)
 &
 (line! = line);

Tony Mullins Griffith College Dublin 48

Interface section
 schema !right

 post
 ([column < numCols]:
 column! = column+1,
 []:
 column! = 1
)
 &
 (line! = line);

Tony Mullins Griffith College Dublin 49

Property
 !left followed by !right leaves the cursor position

unchanged.

 ghost schema !leftRight
 post !left then !right
 assert column' = column & line' = line;

	Lecture 3
	Class Definition
	Class Template
	Constructor
	Class Counter
	Constructor
	Symbol !
	Creating a Counter
	Functions
	Schemas
	Schemas
	Schemas
	Class Invariants
	Class Invariants
	
	Verifier Report
	Verifier Report
	Preconditions
	Preconditions
	Adding preconditions to Counter
	toString function
	Combining Postconditions
	Primed Abstract Variables
	Meaning of Postconditions in Schemas
	Meaning of Postconditions in Schemas
	Equality
	Comparison
	Comparison Test
	Post Assertions
	Post Assertions
	Properties of a class
	Properties of Counter class
	Properties of Counter class
	Properties of Counter class
	Complete Counter class
	Complete Counter class
	Complete Counter class
	Complete Counter class
	Cursor Control
	Cursor Control
	Terminal class
	Terminal class
	Interface section
	Interface section
	Interface section
	Interface section
	Interface section
	Property

